ORGANIC
LETTERS
2001
Vol. 3, No. 7
1037-1039
Preparation of Silyl Enol Ethers Using
(Bistrimethylsilyl)acetamide in Ionic
Liquids
Michael Smietana and Charles Mioskowski*
Laboratoire de Synthe`se Bio-organique, CNRS and UniVersite´ Louis Pasteur,
Faculte´ de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
Received January 23, 2001
ABSTRACT
Ionic liquids have been used for the preparation of silyl enol ethers from aldehydes and ketones with (bistrimethylsilyl)acetamide (BSA) in
good yields.
Synthetic utility and importance of silyl enol ethers has been
well established, and their preparations have been extensively
studied1 and reviewed.2 The most common methods use silyl
chlorides or silyl triflates/base combinations and need careful
attention during workup of the reaction and isolation of the
enol ether.
Because of their solvent properties, ionic liquids are
attracting increasing attention.5 They afford significant
environmental benefits and can contribute to green chemistry.
They are low melting, nonvolatile, and exhibit good physi-
cochemical properties and can be recovered by careful
washing in ether or pentane.
Silylations with silazane-type reagents such as (bistri-
methylsilyl)acetamide (BSA) are generally mild and nearly
neutral. The use of a co-base to capture the acid proton is
not needed and is operationally more convenient due to the
ease of preparation and handling. However, the reactivity
of these silicon-based reagents often remains low and
unsatisfactory. To our knowledge, the only example of the
silylation of enolizable aldehydes and ketones with BSA uses
hexamethylphosphoramide (HMPA) as the solvent in the
presence of small quantities of sodium metal.3,4 According
to the authors, this reaction does not work with any other
solvent and the high toxicity of HMPA requires special
precautions.
Recently ionic liquids have been reported as alternative
solvents for polymerization,6 hydrogenation,7 regioselective
alkylation,8 Friedel-Crafts reactions,9 dimerization of al-
kenes,10 Diels-Alder reactions,11 and cross-coupling reac-
tions.12 In this Letter we report an efficient, fairly concen-
(5) (a) Welton, T. Chem. ReV. 1999, 99, 2077. (b) Wasserscheid, P.;
Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772.
(6) Abdul-sada, A. A. K.; Ambler, P. W.; Hodgson, P. K. G.; Seddon,
K. R.; Stewart, N. J. World Pat. WO 9521871, 1995.
(7) (a) Chauvin, Y.; Mussman, L.; Olivier, H. Angew. Chem., Int. Ed.
Engl. 1995, 38, 3097. (b) Fisher, T.; Sethi, A.; Welton, T.; Woolf, J.
Tetrahedron Lett. 1999, 40, 793. (c) Adams, C. J.; Earle, M. J.; Seddon, K.
R. Chem. Commun. 1999, 25. (d) Dyson, P. J.; Ellis, D. J.; Parker, D. G.;
Welton, T. Chem. Commun. 1999, 1043. (e) Monteiro, A. L.; Zinn, F. K.;
de Souza, R. F.; Dupont, J. Tetrahedron: Asymmetry 1997, 8, 177. (f)
Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; de Souza, R. F.; Dupont, J.
Polyhedron 1996, 15, 1217.
(1) For recent papers about the formation of enoxysilanes, see: (a)
Hydrio, J.; Van de Weghe, P.; Collin, J. Synthesis 1997, 68. (b) Ishino, Y.;
Kita, Y.; Maekawa, H.; Ohno, T.; Yamasaki, Y.; Miyata, T.; Nishiguchi, I.
Tetrahedron Lett. 1999, 40, 1349.
(8) (a) Badri, M.; Brunet, J. J.; Perron, R. Tetrahedron Lett. 1992, 33,
4435. (b) Earle, M. J.; McCormac, P. B.; Seddon, K. R. Chem. Commun.
1998, 2245.
(2) Brownbridge, P. Synthesis 1983, 1. Brownbridge, P. Synthesis 1983,
89.
(3) Dedier, J.; Gerval, P.; Frainnet, E. J. Organomet. Chem. 1980, 185,
183.
(9) (a) Boon, J. A.; Levisky, J. A.; Pflug, J. L.; Wilkes, J. S. J. Org.
Chem. 1986, 54, 480. (b) Luer, G. D.; Bartak, D. E. J. Org. Chem. 1982,
47, 1238. (c) Adams, C. J.; Earle, M. J.; Roberts, G.; Seddon, K. R. Chem.
Commun. 1998, 2097.
(4) El Gihani, M. T.; Heaney, H. Synthesis 1998, 357.
(10) Ellis, B.; Keim, W.; Wasserscheid, P. Chem. Commun. 1999, 337.
10.1021/ol015602h CCC: $20.00 © 2001 American Chemical Society
Published on Web 03/07/2001