B. Morin et al. / Antiviral Research 87 (2010) 345–352
351
Budowsky, E.I., Kayushina, E.N., Tarasov, A.K., Orlenko, S.A., Cherkasov, I.A., Gavrilov,
A.E., Strelenko, Y.A., 1994. Preparation of cyclic 2ꢀ,3ꢀ-monophosphates of
oligoadenylates (A2ꢀp)nA > p and A3ꢀp(A2ꢀp)n-1A > p. Eur. J. Biochem. 220 (1),
97–104.
Dong, B., Silverman, R.H., 1995. 2–5A-dependent RNase molecules dimerize during
activation by 2–5A. J. Biol. Chem. 270 (8), 4133–4137.
Dong, B., Silverman, R.H., 1997. A bipartite model of 2–5A-dependent RNase L. J. Biol.
Chem. 272 (35), 22236–22242.
Han, J.Q., Townsend, H.L., Jha, B.K., Paranjape, J.M., Silverman, R.H., Barton, D.J.,
2007. A phylogenetically conserved RNA structure in the poliovirus open read-
ing frame inhibits the antiviral endoribonuclease RNase L. J. Virol. 81 (11),
5561–5572.
Fig. 4. Analysis of rRNA cleavage in mammalian cells following 2–5A transfection.
Hela cells were transfected with oligofectamine reagent alone (Mock), Poly (I:C) at
0.5 and 2 g/ml or various 2–5As at increasing concentrations (1–10 M). Total RNA
(see Section 2 for experimental details). M: RNA 0.5–10 kb Ladder; 2 (2–5A): dimer;
3 (2–5A): trimer; 4 (2–5A): tetramer. Arrows indicate rRNA degradation products.
Results are representative of three independent experiments.
Hartmann, R., Justesen, J., Sarkar, S.N., Sen, G.C., Yee, V.C., 2003. Crystal structure of
the 2ꢀ-specific and double-stranded RNA-activated interferon-induced antiviral
protein 2ꢀ-5ꢀ-oligoadenylate synthetase. Mol. Cell. 12 (5), 1173–1185.
Hovanessian, A.G., Justesen, J., 2007. The human 2ꢀ-5ꢀoligoadenylate synthetase
family: unique interferon-inducible enzymes catalyzing 2ꢀ-5ꢀ instead of 3ꢀ-5ꢀ
phosphodiester bond formation. Biochimie 89 (6–7), 779–788.
Imai, J., Torrence, P.F., 1981. An efficient chemical synthesis of adenylyl(2ꢀ goes to
5ꢀ)adenylyl(2ꢀ goes to 5ꢀ)adenosine [(2ꢀ-5ꢀ)-oligo(A)]. Methods Enzymol. 79 (Pt
B), 233–244.
Justesen, J., Ferbus, D., Thang, M.N., 1980. 2ꢀ5ꢀ oligoadenylate synthetase, an
interferon induced enzyme: direct assay methods for the products, 2ꢀ5ꢀ oligoad-
enylates and 2ꢀ5ꢀ co-oligonucleotides. Nucleic Acids Res. 8 (14), 3073–3085.
Kajaste-Rudnitski, A., Mashimo, T., Frenkiel, M.P., Guenet, J.L., Lucas, M., Despres, P.,
2006. The 2ꢀ,5ꢀ-oligoadenylate synthetase 1b is a potent inhibitor of West Nile
virus replication inside infected cells. J. Biol. Chem. 281 (8), 4624–4637.
Kim, E.E., Wyckoff, H.W., 1991. Reaction mechanism of alkaline phosphatase based
on crystal structures. Two-metal ion catalysis. J. Mol. Biol. 218 (2), 449–464.
Kitade, Y., Nakata, Y., Hirota, K., Maki, Y., Pabuccuoglu, A., Torrence, P.F., 1991. 8-
Methyladenosine-substituted analogues of 2–5A: synthesis and their biological
activities. Nucleic Acids Res. 19 (15), 4103–4108.
with the ankyrin region (Tanaka et al., 2004), thus pointing out
2004; Xiang et al., 2003). In fact short 2–5A dimers are not able
2004; Xiang et al., 2003). Hence, the physiological effect of the
purified 2–5As corresponds to what was previously reported, i.e.,
the dimer is inactive while the trimer and the tetramer show the
expected RNase L activation effect (Tanaka et al., 2004; Xiang et al.,
2003).
In conclusion, we have made use of two mammalian OASs to
produce a variety of 2–5As that were subsequently HPLC puri-
fied and individually characterised. The method described herein is
relatively straightforward and does not require a specialized equip-
ment other than an HPLC set-up. The large amount and purity
of these 2–5As should prove useful to study the yet ill-defined
pathway of viral innate immunity involving 2ꢀ5ꢀOAS and RNase
L.
Kodym, R., Kodym, E., Story, M.D., 2009. 2ꢀ-5ꢀ-Oligoadenylate synthetase is activated
by a specific RNA sequence motif. Biochem. Biophys. Res. Commun. 388 (2),
Lesiak, K., Imai, J., Floyd-Smith, G., Torrence, P.F., 1983. Biological activities of phos-
phodiester linkage isomers of 2–5A. J. Biol. Chem. 258 (21), 13082–13088.
Malathi, K., Dong, B., Gale Jr., M., Silverman, R.H., 2007. Small self-RNA generated by
RNase L amplifies antiviral innate immunity. Nature 448 (7155), 816–819.
Marie, I., Blanco, J., Rebouillat, D., Hovanessian, A.G., 1997. 69-kDa and 100-kDa
isoforms of interferon-induced (2ꢀ–5ꢀ) oligoadenylate synthetase exhibit differ-
ential catalytic parameters. Eur. J. Biochem. 248 (2), 558–566.
Min, J.Y., Krug, R.M., 2006. The primary function of RNA binding by the influenza A
virus NS1 protein in infected cells: Inhibiting the 2ꢀ-5ꢀ oligo (A) synthetase/RNase
L pathway. Proc. Natl. Acad. Sci. U. S. A. 103 (18), 7100–7105.
Nakanishi, M., Tanaka, N., Mizutani, Y., Mochizuki, M., Ueno, Y., Nakamura, K.T.,
Kitade, Y., 2005. Functional characterization of 2ꢀ,5ꢀ-linked oligoadenylate bind-
ing determinant of human RNase L. J. Biol. Chem. 280 (50), 41694–41699.
Rebouillat, D., Hovanessian, A.G., 1999. The human 2ꢀ,5ꢀ-oligoadenylate synthetase
family: interferon-induced proteins with unique enzymatic properties. J. Inter-
feron Cytokine Res. 19 (4), 295–308.
Rebouillat, D., Hovnanian, A., Marie, I., Hovanessian, A.G., 1999. The 100-kDa 2ꢀ,5ꢀ-
oligoadenylate synthetase catalyzing preferentially the synthesis of dimeric
pppA2ꢀp5ꢀA molecules is composed of three homologous domains. J. Biol. Chem.
274 (3), 1557–1565.
Roberts, W.K., Hovanessian, A., Brown, R.E., Clemens, M.J., Kerr, I.M., 1976.
Interferon-mediated protein kinase and low-molecular-weight inhibitor of pro-
tein synthesis. Nature 264 (5585), 477–480.
Rusch, L., Dong, B., Silverman, R.H., 2001. Monitoring activation of ribonuclease L by
2ꢀ,5ꢀ-oligoadenylates using purified recombinant enzyme and intact malignant
glioma cells. Methods Enzymol. 342, 10–20.
Rushizky, G.W., Sober, H.A., 1963. Studies on the specificity of ribonuclease T2. J.
Biol. Chem. 238, 371–376.
Sarkar, S.N., Sen, G.C., 1998. Production, purification, and characterization of recom-
binant 2ꢀ, 5ꢀ-oligoadenylate synthetases. Methods 15 (3), 233–242.
Sawicki, D.L., Silverman, R.H., Williams, B.R., Sawicki, S.G., 2003. Alphavirus minus-
strand synthesis and persistence in mouse embryo fibroblasts derived from mice
lacking RNase L and protein kinase R. J. Virol. 77 (3), 1801–1811.
Sen, G.C., 2001. Viruses and interferons. Annu. Rev. Microbiol. 55, 255–281.
Servant, M.J., Grandvaux, N., Hiscott, J., 2002. Multiple signaling pathways leading
to the activation of interferon regulatory factor 3. Biochem. Pharmacol. 64 (5–6),
985–992.
Acknowledgments
We wish to thank Jean-Jacques Vasseur (IBMM, Montpellier)
for MALDI-TOF spectrometry analysis, Gilles Valette (Plateau tech-
nique, Institut des Biomolécules Max Mousseron (IBMM)) for others
mass spectrometry analysis, and Saumendra N. Sarkar and Games C.
Sen from the Lerner Research Institute, Cleveland, USA for the gen-
erous gift of the human OAS2 cDNA clone. The help and advice of
Stéphane Canaan and Jean Claude Bakala (IBSM-EIPL, Marseille) in
baculovirus expression is gratefully acknowledged. This work was
supported by a grant from the Agence Nationale de la Recherche
(ANR), programme “Maladies infectieuses et leur environnement”,
project CHIKVIRULENCE, and a grant from the Direction Générale
de l’Armement (contract 09cà40).
Shuman, S., 1990. Catalytic activity of vaccinia mRNA capping enzyme subunits
coexpressed in Escherichia coli. J. Biol. Chem. 265 (20), 11960–11966.
Silverman, R.H., 2007a. A scientific journey through the 2–5A/RNase L system.
Cytokine Growth Factor Rev. 18 (5–6), 381–388.
Appendix A. Supplementary data
Silverman, R.H., 2007b. Viral encounters with 2ꢀ,5ꢀ-oligoadenylate synthetase and
RNase L during the interferon antiviral response. J. Virol. 81 (23), 12720–12729.
Smith, J.A., Schmechel, S.C., Williams, B.R., Silverman, R.H., Schiff, L.A., 2005.
Involvement of the interferon-regulated antiviral proteins PKR and RNase L in
reovirus-induced shutoff of cellular translation. J. Virol. 79 (4), 2240–2250.
Tanaka, N., Nakanishi, M., Kusakabe, Y., Goto, Y., Kitade, Y., Nakamura, K.T., 2004.
Structural basis for recognition of 2ꢀ,5ꢀ-linked oligoadenylates by human ribonu-
clease L. Embo J. 23 (20), 3929–3938.
Supplementary data associated with this article can be found, in
References
Behera, A.K., Kumar, M., Lockey, R.F., Mohapatra, S.S., 2002. 2ꢀ-5ꢀ Oligoadenylate
synthetase plays a critical role in interferon-gamma inhibition of respiratory
syncytial virus infection of human epithelial cells. J. Biol. Chem. 277 (28),
25601–25608.
Thakur, C.S., Jha, B.K., Dong, B., Das Gupta, J., Silverman, K.M., Mao, H., Sawai, H., Naka-
mura, A.O., Banerjee, A.K., Gudkov, A., Silverman, R.H., 2007. Small-molecule