DINUCLEAR ZN(II) AND TETRANUCLEAR CO(II) COMPLEXES OF A N2O2 LIGAND
17 of 19
[20] H. Sugimoto, A. Ogawa, React. Funct. Polym. 2007, 67, 1277.
[21] H. R. Wen, Y. Wang, J. L. Chen, Y. Z. Tang, J. S. Liao,
C. M. Liu, Inorg. Chem. Commun. 2012, 20, 303.
[22] B. F. Abrahams, T. A. Hudson, R. Robson, Chem. – Eur. J.
2006, 12, 7095.
[23] N. Chopin, G. Chastanet, B. Le Guennic, M. Médebielle,
G. Pilet, Eur. J. Inorg. Chem. 2012, 31, 5058.
PC3 cancer cells. In addition, thermal decomposition of
the synthesized complexes resulted in pure nanostruc-
tured ZnO and Co3O4, which were used as recyclable het-
erogeneous catalysts in selective oxidation of benzyl
alcohol to benzaldehyde. Both catalysts showed excellent
efficiency in terms of conversion and selectivity, along
with acceptable recyclability.
[24] J. Qi, X. S. Zhai, H. L. Zhu, J. L. Lin, Acta Crystallogr., Sect. C:
Cryst. Struct. Commun. 2014, 70, 198.
[25] Y. Wang, Y. Ma, R. Liu, L. Yang, G. Tian, N. Sheng, Z. Sheng,
Anorg. Allg. Chem. 2016, 642, 546.
[26] X. Han, X. Shi, G. Huang, C. Li, S. Mao, K. Shen, H. Wu,
X. Tang, Appl. Organomet. Chem. 2018, 32, 4453.
ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support from
the Research Council of University of Guilan.
_
ꢁ
[27] A. Bi˙li˙ci˙, I. Kaya, F. Dogan, J. Polym. Sci., Part A: Polym.
ORCID
Chem. 2009, 47, 2977.
[28] P. Seth, L. K. Das, M. G. Drew, A. Ghosh, Eur. J. Inorg. Chem.
2012, 13, 2232.
[29] S. C. Manna, S. Manna, S. Mistri, A. Patra, E. Zangrando,
H. Puschmann, P. A. Goddard, S. Ghannadzadeh, Che-
mistrySelect 2018, 3, 9885.
[30] D. Dey, G. Kaur, A. Ranjani, L. Gayathri, P. Chakraborty,
J. Adhikary, J. Pasan, D. Dhanasekaran, A. R. Choudhury,
M. A. Akbarsha, N. Kole, Eur. J. Inorg. Chem. 2014, 21, 3350.
[31] S. Ghosh, A. Spannenberg, E. Mejía, Helv. Chim. Acta 2017,
100, 1700176.
[32] A. A. AbdelHamid, Y. Yu, J. Yang, J. Y. Ying, Adv. Mater.
2017, 29, 1701427.
[33] H. B. Bohidar, K. Rawat, Design of nanostructures: self-assem-
bly of nanomaterials, John Wiley & Sons, Weinheim 2017.
[34] M. Niederberger, G. Garnweitner, Chem. – Eur. J. 2006, 12,
7282.
[35] Y. Li, K. Keith, N. Chopra, J. Alloys Compd. 2017, 703, 414.
[36] H. M. Aly, M. E. Moustafa, M. Y. Nassar, E. A. Abdelrahman,
J. Mol. Struct. 2015, 1086, 223.
[37] M. Y. Nassar, H. M. Aly, E. A. Abdelrahman, M. E. Moustafa,
J. Mol. Struct. 2017, 1143, 462.
[38] C. Yan, G. Chen, X. Zhou, J. Sun, C. Lv, Adv. Funct. Mater.
2016, 26, 1428.
[39] Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, ACS Nano 2015, 9,
5310.
REFERENCES
[1] A. Gubendran, G. G. V. Kumar, M. P. Kesavan, G. Rajagopal,
P. Athappan, J. Rajesh, Appl. Organomet. Chem. 2018, 32,
4128.
[2] D. Gopalakrishnan, S. Srinath, B. Baskar, N. S. Bhuvanesh,
M. Ganeshpandian, Appl. Organomet. Chem. 2019, 33, 4756.
[3] S. Siangwata, S. Chulu, C. L. Oliver, G. S. Smith, Appl.
Organomet. Chem. 2017, 31, 3593.
[4] Q. Chen, J. Huang, Appl. Organomet. Chem. 2006, 20, 758.
[5] M. N. Uddin, Z. A. Siddique, N. Mase, M. Uzzaman,
W. Shumi, Appl. Organomet. Chem. 2019, 33, 4876.
[6] L. Pogány, J. Moncol, J. Pavlik, M. Mazúr, I. Šalitroš,
ChemPlusChem 2019, 84, 358.
[7] E. Rufino-Felipe, N. Lopez, F. A. Vengoechea-Gómez,
ꢀ
L. G. Guerrero-Ramírez, M. A. Muñoz-Hernández, Appl.
Organomet. Chem. 2018, 32, 4315.
[8] C. Z. Gao, T. S. Wang, Y. Zhang, J. Chen, Y. X. Qian, B. Yang,
Y. J. Zhang, Appl. Organomet. Chem. 2015, 29, 138.
_
[9] B. Dede, I. Özmen, F. Karipcin, M. Cengiz, Appl. Organomet.
Chem. 2009, 23, 512.
[10] S. Biswas, S. Das, J. Acharya, V. Kumar, J. van Leusen,
P. Kögerler, J. M. Herrera, E. Colacio, V. Chandrasekhar,
Chem. – Eur. J. 2017, 23, 5154.
[11] P. Pandey, N. Dwivedi, G. Cosquer, M. Yamashita, S. Sunkari,
ChemistrySelect 2018, 3, 10311.
[12] C. Hopa, I. Cokay, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun. 2016, 72, 149.
[13] A. Bhattacharyya, S. Roy, J. Chakraborty, S. Chattopadhyay,
Polyhedron 2016, 112, 109.
[14] H. Sun, L. Wu, W. Yuan, J. Zhao, Y. Liu, Inorg. Chem.
Commun. 2016, 70, 164.
[15] M. Sutradhar, L. M. Carrella, E. Rentschler, Polyhedron 2012,
38, 297.
[16] Y. Yahsi, H. Kara, L. Sorace, O. Buyukgungor, Inorg. Chim.
Acta 2011, 366, 191.
[17] D. J. Wilson, C. M. Beavers, A. F. Richards, Eur. J. Inorg.
Chem. 2012, 7, 1130.
[40] D. Ponnamma, J. J. Cabibihan, M. Rajan, S. S. Pethaiah,
K. Deshmukh, J. P. Gogoi, S. K. Pasha, M. B. Ahamed,
J. Krishnegowda, B. N. Chandrashekar, A. R. Polu, Mater. Sci.
Eng. C 2019, 98, 1210.
[41] W. Qiu, H. Tanaka, F. Gao, Q. Wang, M. Huang, Adv. Powder
Technol. 2019, 30, 2083.
[42] X. Dong, Y. Su, T. Lu, L. Zhang, L. Wu, Y. Lv, Sens. Actuators
B 2018, 258, 349.
[43] Z. S. Wang, C. H. Huang, Y. Y. Huang, Y. J. Hou, P. H. Xie,
B. W. Zhang, H. M. Cheng, Chem. Mater. 2001, 13, 678.
[44] H. Parangusan, D. Ponnamma, M. A. A. Al-Maadeed,
A. Marimuthu, Photochem. Photobiol. 2018, 94, 237.
[45] Y. Leprince-Wang, Piezoelectric ZnO nanostructure for energy
harvesting, Vol. 1, John Wiley & Sons, Hoboken, NJ, USA
2015.
[46] H. Rodríguez-Tobías, G. Morales, O. Rodríguez-Fernández,
P. Acuña, J. Appl. Polym. Sci. 2013, 127, 4708.
[47] J. B. Rajesha, A. Ramasami, G. Nagaraju, G. Balakrishna,
Water Environ. Res. 2017, 89, 396.
[18] F. F. Chang, Y. Hu, K. Zhang, H. Q. Chen, W. Huang, Eur.
J. Inorg. Chem. 2017, 3, 540.
[19] Z. L. You, Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
2005, 61, 466.