Job/Unit: O43433
/KAP1
Date: 04-12-14 16:38:06
Pages: 6
P. Schroll, B. König
SHORT COMMUNICATION
Enamines have already been successfully used in oxy-
amination reactions. After hydrolysis, α-functionalized
carbonyls were obtained.[49,50] Therefore, related silyl enol
ethers were examined as nucleophilic carbonyl deriva-
tives.[51] These enolate equivalents were converted in 30 min
under photooxidation conditions into α-oxyaminated prod-
ucts 11a–c in good yields (Table 3).
Acknowledgments
Financial support by the Evonik Foundation (stipend to P. S.) and
the Deutsche Forschungsgemeinschaft (DFG) (GRK 1626, Chemi-
cal Photocatalysis) is acknowledged.
[1] C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 2012, 41, 3464–
3484.
Table 3. Oxyamination of silyl enol ethers.[a]
[2] V. Nair, J. Mathew, J. Prabhakaran, Chem. Soc. Rev. 1997, 26,
127–132.
[3] T. Dohi, M. Ito, N. Yamaoka, K. Morimoto, H. Fujioka, Y.
Kita, Tetrahedron 2009, 65, 10797–10815.
[4] X.-Q. Pan, J.-P. Zou, W. Zhang, Mol. Diversity 2009, 13, 421–
438.
[5] D. S. Hamilton, D. A. Nicewicz, J. Am. Chem. Soc. 2012, 134,
18577–18580.
Entry
Reactant
R
Product
Yield [%]
[6] J.-M. M. Grandjean, D. A. Nicewicz, Angew. Chem. Int. Ed.
2013, 52, 3967–3971; Angew. Chem. 2013, 125, 4059–4063.
[7] T. M. Nguyen, D. A. Nicewicz, J. Am. Chem. Soc. 2013, 135,
9588–9591.
1
2
3
10a
10b
10c
Me
H
Cl
11a
11b
11c
64
65
77
[8] A. J. Perkowski, D. A. Nicewicz, J. Am. Chem. Soc. 2013, 135,
[a] Reaction conditions: Silyl enol ether (0.3 mmol), TEMPO
(0.3 mmol), (NH4)2S2O8 (0.15 mmol), Ru(bpy)3Cl2·6H2O
(0.006 mmol), DMSO (3.0 mL, absolute), photomicroreactor, irra-
diation with eight high-power LEDs (λmax 455Ϯ15 nm,
10334–10337.
[9] M. Riener, D. A. Nicewicz, Chem. Sci. 2013, 4, 2625–2629.
[10] Y. Yasu, T. Koike, M. Akita, Adv. Synth. Catal. 2012, 354,
3414–3420.
[11] K. Miyazawa, Y. Yasu, T. Koike, M. Akita, Chem. Commun.
2013, 49, 7249–7251.
=
P = 3.0 W). Yields of the isolated products are given.
[12] H. Huang, G. Zhang, L. Gong, S. Zhang, Y. Chen, J. Am.
Chem. Soc. 2014, 136, 2280–2283.
[13] M. Röck, M. Schmittel, J. Chem. Soc., Chem. Commun. 1993,
1739.
Conclusions
A fast and efficient visible-light-mediated oxyamination
procedure of β-keto enolates was developed. The method
was suitable for α-oxyamination of stable enolates, silyl enol
ethers, β-keto phosphine oxides, and β-keto alkyl phos-
phonic esters. The reaction proceeded through light-in-
[14] M. Schmittel, M. Lal, R. Lal, M. Röck, A. Langels, Z. Rappo-
port, A. Basheer, J. Schlirf, H.-J. Deiseroth, U. Flörke, G. Ges-
cheidt, Tetrahedron 2009, 65, 10842–10855.
[15] M. Schmittel, A. Haeuseler, J. Organomet. Chem. 2002, 661,
169–179.
[16] U. Jahn, J. Org. Chem. 1998, 63, 7130–7131.
duced one-electron oxidation of 2,2,6,6-tetramethylpiper- [17] U. Jahn, P. Hartmann, I. Dix, P. G. Jones, Eur. J. Org. Chem.
idine nitroxide, which was followed by attack of the nucleo-
2001, 3333–3355.
[18] U. Jahn, E. Dinca, P. Hartmann, J. Smrcek, I. Dix, P. G. Jones,
ˇ
Eur. J. Org. Chem. 2012, 4461–4482.
[19] N. Merbouh, J. M. Bobbitt, C. Brückner, Org. Prep. Proced.
Int. 2004, 36, 1–31.
phile; this led to α-functionalized carbonyls. The scope of
the method was limited by the basicity of the enolate, as
basic compounds decomposed under the reaction condi-
tions. The use of flow chemistry in a photomicroreactor
reduced the reaction time significantly.
[20] L. De Luca, G. Giacomelli, S. Masala, A. Porcheddu, J. Org.
Chem. 2003, 68, 4999–5001.
[21] A. Dijksman, A. Marino-González, A. Mairata i Payeras,
I. W. C. E. Arends, R. A. Sheldon, J. Am. Chem. Soc. 2001,
123, 6826–6833.
[22] H. J. Schäfer, M. Schämann, Synlett 2004, 1601–1603.
[23] T. Nagasawa, S. I. Allakhverdiev, Y. Kimura, T. Nagata, Pho-
tochem. Photobiol. Sci. 2009, 8, 174–180.
[24] V. Jeena, R. S. Robinson, Chem. Commun. 2012, 48, 299–301.
[25] M. Zhang, C. Chen, W. Ma, J. Zhao, Angew. Chem. Int. Ed.
2008, 47, 9730–9733; Angew. Chem. 2008, 120, 9876–9879.
[26] D. Liu, H. Zhou, X. Gu, X. Shen, P. Li, Chin. J. Chem. 2014,
32, 117–122.
Experimental Section
General Procedure for Photocatalytic α-Oxyamination Reactions of
Stable Nucleophiles: A 10 mL flask was equipped with Ru(bpy)3-
Cl2·6H2O (9.0 mg, 0.012 mmol, 0.02 equiv.), nucleophile
(0.6 mmol, 1.0 equiv.), TEMPO (93.8 mg, 0.6 mmol, 1.0 equiv.),
ammonium peroxodisulfate (68.5 mg, 0.3 mmol, 0.5 equiv.), and
dry DMSO (6.0 mL). The mixture was transferred to a glass micro-
reactor (115ϫ60ϫ6 mm, diameter of capillary: 1.0 mm) by a sy-
ringe and was irradiated with an array of eight blue high-power
LEDs (λmax = 455Ϯ15 nm, P = 3.0 W) for 10 min. The tempera-
ture in the microreactor was kept at 20 °C. After that, the mixture
was diluted with water (5 mL) and extracted with diethyl ether (3ϫ
5 mL). The combined organic layer was concentrated in vacuo. Pu-
rification of the crude product was achieved by flash column
chromatography (petroleum ether/ethyl acetate, 19:1). α-Oxyamin-
ation reactions of organophosphorus compounds differ by initial
addition of sodium hydride (50 mg, 0.72 mmol, 1.2 equiv., 60% sus-
pension in paraffin oil) and reaction times of 30 min.
[27] J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 16901–
16910.
[28] J. M. Hoover, B. L. Ryland, S. S. Stahl, J. Am. Chem. Soc. 2013,
135, 2357–2367.
[29] M. Daniel, L. Fensterbank, J.-P. Goddard, C. Ollivier, Org.
Chem. Front. 2014, 1, 551–555.
[30] T. Koike, Y. Yasu, M. Akita, Chem. Lett. 2012, 41, 999–1001.
[31] H. Liu, W. Feng, C. W. Kee, Y. Zhao, D. Leow, Y. Pan, C.-H.
Tan, Green Chem. 2010, 12, 953–956.
[32] J. Reedijk, Platinum Met. Rev. 2008, 52, 2–11.
[33] Z. J. Garlets, J. D. Nguyen, C. R. J. Stephenson, Isr. J. Chem.
2014, 54, 351–360.
4
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0