NATure CHemisTry
Articles
7. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-
based synthesis of polysulfates. Angew. Chem. Int. Ed. 53, 9466–9470 (2014).
8. Gao, B. et al. Bifuoride-catalysed sulfur(vi) fuoride exchange reaction for the
synthesis of polysulfates and polysulfonates. Nat. Chem. 9, 1083–1088 (2017).
9. Wang, H. et al. SuFEx-based polysulfonate formation from ethenesulfonyl
fuoride–amine adducts. Angew. Chem. Int. Ed. 56, 11203–11208 (2017).
10. Liu, Z. et al. SuFEx click chemistry enabled late-stage drug functionalization.
J. Am. Chem. Soc. 140, 2919–2925 (2018).
11. Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx
click chemistry: sequential sulfur(vi) fuoride exchange connections of
diverse modules launched from an SOF4 hub. Angew. Chem. Int. Ed. 56,
2903–2908 (2017).
12. Wang, Q. et al. Bioconjugation by copper(i)-catalyzed azide–alkyne [3+2]
cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).
13. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise
Huisgen cycloaddition process: copper(i)-catalyzed regioselective ‘ligation’ of
azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).
14. Verhelst, S. H., Fonovic, M. & Bogyo, M. A mild chemically cleavable linker
system for functional proteomic applications. Angew. Chem. Int. Ed. 46,
1284–1286 (2007).
29. Morisseau, C. & Hammock, B. D. Epoxide hydrolases: mechanisms, inhibitor
designs, and biological roles. Ann. Rev. Pharmacol. Toxicol. 45, 311–333 (2005).
30. Spencer, E. S. et al. Multiple binding modes of isothiocyanates that inhibit
macrophage migration inhibitory factor. Eur. J. Med. Chem. 93, 501–510 (2015).
31. Lee, K. S. et al. Optimized inhibitors of soluble epoxide hydrolase improve
in vitro target residence time and in vivo efcacy. J. Med. Chem. 57,
7016–7030 (2014).
32. Barbosa-Sicard, E. et al. Inhibition of the soluble epoxide hydrolase by
tyrosine nitration. J. Biol. Chem. 284, 28156–28163 (2009).
33. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from
BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).
34. Dawicki-McKenna, J. M. et al. PARP-1 activation requires local unfolding of
an autoinhibitory domain. Mol. Cell 60, 755–768 (2015).
35. Langelier, M.-F., Servent, K. M., Rogers, E. E. & Pascal, J. M. A third
zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates
DNA-dependent enzyme activation. J. Biol. Chem. 283, 4105–4114 (2008).
36. Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular
functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13,
411–424 (2012).
37. Coleman, R. L. et al. Rucaparib maintenance treatment for recurrent
ovarian carcinoma afer response to platinum therapy (ARIEL3): a
randomised, double-blind, placebo-controlled, phase 3 trial. Te Lancet
390, 1949–1961 (2017).
15. Dayon, L. et al. Relative quantifcation of proteins in human cerebrospinal
fuids by MS/MS using 6-plex isobaric tags. Anal. Chem. 80, 2921–2931 (2008).
16. Konecny, G. E. & Kristeleit, R. S. PARP inhibitors for BRCA1/2-mutated and
sporadic ovarian cancer: current practice and future directions. Br J. Cancer
115, 1157–1173 (2016).
38. Torsell, A.-G. et al. Structural basis for potency and promiscuity in
poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J. Med.
Chem. 60, 1262–1271 (2017).
17. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16,
110–120 (2016).
39. Futreal, P. et al. BRCA1 mutations in primary breast and ovarian carcinomas.
Science 266, 120–122 (1994).
18. Lue, H., Kleemann, R., Calandra, T., Roger, T. & Bernhagen, J. Macrophage
migration inhibitory factor (MIF): mechanisms of action and role in disease.
Microbes Infect. 4, 449–460 (2002).
40. Wooster, R. et al. Identifcation of the breast cancer susceptibility gene
BRCA2. Nature 378, 789–792 (1995).
19. Calandra, T. & Roger, T. Macrophage migration inhibitory factor: a regulator
of innate immunity. Nat. Rev. Immunol. 3, 791–800 (2003).
41. Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. (ADP-ribose)n
participates in DNA excision repair. Nature 283, 593–596 (1980).
42. Tentori, L. & Graziani, G. Chemopotentiation by PARP inhibitors in cancer
therapy. Pharmacol. Res. 52, 25–33 (2005).
20. Imig, J. D. & Hammock, B. D. Soluble epoxide hydrolase as a therapeutic
target for cardiovascular diseases. Nat. Rev. Drug Disc. 8, 794–805 (2009).
21. Tonjes, M. et al. BCAT1 promotes cell proliferation through amino acid
catabolism in gliomas carrying wild-type IDH1. Nat. Med. 19, 901–908 (2013).
22. Xu, M. et al. BCAT1 promotes tumor cell migration and invasion in
hepatocellular carcinoma. Oncol. Lett. 12, 2648–2656 (2016).
43. Bryant, H. E. et al. Specifc killing of BRCA2-defcient tumours with
inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).
44. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a
therapeutic strategy. Nature 434, 917–921 (2005).
23. Zhang, L. & Han, J. Branched-chain amino acid transaminase 1 (BCAT1)
promotes the growth of breast cancer cells through improving
mTOR-mediated mitochondrial biogenesis and function. Biochem. Biophys.
Res. Commun. 486, 224–231 (2017).
45. Nijman, S. M. B. Synthetic lethality: general principles, utility and detection
using genetic screens in human cells. FEBS Lett. 585, 1–6 (2011).
46. Bridges, C. B. Te origin of variations in sexual and sex-limited characters.
Am. Nat. 56, 51–63 (1922).
47. Pujade-Lauraine, E. et al. Olaparib tablets as maintenance therapy in patients
with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation
(SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled,
phase 3 trial. Lancet Oncol. 18, 1274–1284 (2017).
48. Kam, T.-I. et al. Poly(ADP-ribose) drives pathologic α-synuclein
neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018).
49. Berger, N. A. et al. Opportunities for the repurposing of PARP inhibitors for
the therapy of non-oncological diseases. Br. J. Pharmacol. 175, 192–222 (2018).
24. Zhao, Q. et al. Broad-spectrum kinase profling in live cells with lysine-
targeted sulfonyl fuoride probes. J. Am. Chem. Soc. 139, 680–685 (2017).
25. Zheng, Q. et al. SuFEx-enabled, agnostic discovery of covalent inhibitors of
human neutrophil elastase. Proc. Natl Acad. Sci. USA 116, 18808–18814 (2019).
26. Hett, E. C. et al. Rational targeting of active-site tyrosine residues using
sulfonyl fuoride probes. ACS Chem. Biol. 10, 1094–1098 (2015).
27. Hanoulle, X. et al. A new functional, chemical proteomics technology to
identify purine nucleotide binding sites in complex proteomes. J. Proteome
Res. 5, 3438–3445 (2006).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
28. Goto, M. et al. Structural determinants for branched-chain aminotransferase
isozyme-specifc inhibition by the anticonvulsant drug gabapentin.
J. Biol. Chem. 280, 37246–37256 (2005).
© The Author(s), under exclusive licence to Springer Nature Limited 2020