3914
at room temperature in acetonitrile for 21 h. With the presence of an α-methyl substituent, aldehyde 21
(entry 2) led to 68% of sulfide 22 in 3 h under similar conditions. All the ketones that we have studied
reacted poorly as shown in entries 3 and 4. Sulfenylation occurred preferentially at the more substituted
side of the unsymmetric ketones with low yields.
The reactivity pattern observed in these sulfenylation reactions correlates well with the enol content
of the carbonyl compounds.10 It was reported recently that the enol content of acylsilanes is higher than
aldehydes and ketones.11 In this study, the acylsilanes show the highest reactivity towards imide 3 under
acidic conditions. Among the acylsilanes, ethanoylsilane 12 is the least reactive. Presumably, acylsilane
12 is the least enolizable acylsilane that we have studied. Ketones are known to have lower enol content
than aldehyde.10 Here, we found that the ketones are poor substrates in this reaction.
Acknowledgements
Financial support by the National Science Council of the Republic of China is gratefully acknowled-
ged.
References
1. (a) Trost, B. M. Chem. Rev. 1978, 78, 363–382. (b) Trost, B. M. Acc. Chem. Res. 1978, 11, 453–461. (c) Foray, G.;
Peñéñory, A. B.; Rossi, R. A. Tetrahedron Lett. 1997, 38, 2035–2038.
2. Chang, S.-Y.; Jiaang, W.-T.; Cherng, C.-D.; Tang, K.-H.; Huang, C.-H.; Tsai, Y.-M. J. Org. Chem. 1997, 62, 9089–9098.
3. For recent reviews about acylsilanes, see: (a) Ricci, A.; Degl’Innocenti, A. Synthesis 1989, 647–660. (b) Page, P. C. B.;
Klair, S. S.; Rosenthal, S. Chem. Soc. Rev. 1990, 19, 147–195. (c) Cirillo, P. F.; Panek, J. S. Org. Prep. Proc. Int. 1992, 24,
553–582. (d) Page, P. C. B.; McKenzie, M. J.; Klair, S. S.; Rosenthal, S. In Acyl Silanes; Rappoport, Z.; Apeloig, Y., Eds.
The chemistry of organic silicon compounds. John Wiley & Sons: New York, 1998; Vol. 2, Chap. 27, pp. 1599–1665.
4. For the preparation of α-sulfenylated acylsilanes through enol silyl ethers, see: (a) Minami, N.; Abe, T.; Kuwajima, I. J.
Organometal. Chem. 1978, 145, C1–C3. (b) Reich, H. J.; Holtan, R. C.; Bolm, C. J. Am. Chem. Soc. 1990, 112, 5609–5617.
(c) Thomas, S. E.; Tustin, G. J. Tetrahedron 1992, 48, 7629–7640.
5. Groebel, W. Chem. Ber. 1960, 93, 284–285.
6. For α-selenylation of ketones and aldehydes with N-(phenylseleno)phthalimide under acidic conditions, see: Cossy, J.;
Furet, N. Tetrahedron Lett. 1993, 34, 7755–7756.
7. For the use of sulfenamide derivatives to convert ketones to their β-ketosulfides, see: (a) Mukaiyama, T.; Kobayashi, S.;
Kumamoto, T. Tetrahedron Lett. 1970, 5115–5118. (b) Kumamoto, T.; Kobayashi, S.; Mukaiyama, T. Bull. Chem. Soc.
Jpn. 1972, 45, 866–870.
8. Miller, J. A.; Zweifel, G. Synthesis 1981, 288–289.
9. Seebach, D.; Teschner, M. Chem. Ber. 1976, 109, 1601–1616.
10. Guthrie, J. P.; Cullimore, P. A. Can. J. Chem. 1979, 57, 240–248.
11. Kresge, A. J.; Tobin, J. B. J. Org. Chem. 1993, 58, 2652–2657.