C O M M U N I C A T I O N S
Table 2. Catalytic Asymmetric Decarboxylative Mannich-Type
Reaction
with synthetically useful enantio- and diastereoselectivity. Detailed
mechanistic studies and expansion of this catalytic nucleophile-
activation method to other asymmetric reactions are ongoing.
Acknowledgment. Financial support was provided by a Grant-
in-Aid for Scientific Research (B) from JSPS. We thank Dr. Shiro
of Rigaku Corporation for X-ray crystallography of 4ac.
Supporting Information Available: Experimental procedures,
characterization of the products, and crystallographic data (CIF) for
4ac. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Examples of catalytic asymmetric construction of contiguous quaternary-
trisubstituted carbons: (a) Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.;
Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11586. (b) Chowdari, N. S.; Suri,
J. T.; Barbas, C. F., III. Org. Lett. 2004, 6, 2507. (c) Denmark, S. E.; Wilson,
T. W.; Burk, M. T.; Heemstra, J. R., Jr. J. Am. Chem. Soc. 2007, 129,
14864. (d) Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc.
2007, 129, 12356. (e) Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2006, 45, 6366. (f) Poulsen, T. B.; Alemparte, C.; Saaby,
S.; Bella, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 2896. (g)
Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.;
Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44, 1525.
(2) A review of catalytic asymmetric synthesis of all-carbon quaternary
centers: Trost, B. M.; Jiang, C. Synthesis 2006, 369.
(3) Shibasaki, M.; Kanai, M. Chem. ReV. 2008, 108, 2853.
(4) (a) An asymmetric synthesis of ꢀ2,2,3-amino acids using a stoichiometric
chiral auxiliary: Tiong, E. A.; Gleason, J. L. Org. Lett. 2009, 11, 1725. (b)
A relevant aldol reaction using a chiral auxiliary: Das, J. P.; Chechik, H.;
Marek, I. Nat. Chem. 2009, 1, 128.
(5) Reviews of the catalytic asymmetric Mannich reaction: (a) Kobayashi, S.;
Ishitani, H. Chem. ReV. 1999, 99, 1069. (b) Marques, M. M. B. Angew.
Chem., Int. Ed. 2006, 45, 348.
(6) Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7, 3757.
(7) The low enantio- and diastereoselectivity observed in entries 1 and 2 of
Table 1 were due to the existence of a retro-Mannich reaction under the
direct reaction conditions. When a 7:1 mixture of 4aa (87% ee) and its
diastereomer 4aa′ was subjected to the conditions of entry 2 (10 mol %
CuOtBu-DTBM-SEGPHOS at 0 °C for 24 h), 4aa and 4aa′ were recovered
in 73% yield with 1:1.3 dr, along with imine 1a in 27% yield. The
enantiomeric excess of recovered 4aa was less than 5%.
(8) Polyketide synthase and fatty acid synthase are typical catalysts that utilize
decarboxylative nucleophile generation: Dewick, P. M. Medicinal Natural
Products; Wiley: West Sussex, U.K., 2001.
(9) (a) A catalytic asymmetric aldol reaction using malonic acid half-thioesters:
Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.; Aloise, A. D.; Shair,
M. D. J. Am. Chem. Soc. 2005, 127, 7284. (b) This reaction proceeds
through aldol addition followed by decarboxylation: Fortner, K. C.; Shair,
M. D. J. Am. Chem. Soc. 2007, 129, 1032.
(10) Catalytic asymmetric decarboxylative protonation of carboxylic acids has
been reported: (a) Brunner, H.; Schmidt, P. Eur. J. Org. Chem. 2000, 2119.
(b) Amere, M.; Lasne, M.-C.; Rouden, J. Org. Lett. 2007, 9, 2621.
(11) Allyl esters or their derivatives are the main substrates for decarboxylative
nucleophile generation in asymmetric catalysis. Examples: (a) Behenna,
D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044. (b) Trost, B. M.;
Xu, J. J. Am. Chem. Soc. 2005, 127, 2846. Also see ref 1d.
(12) Although decarboxylative nucleophile generation was proposed in the
following reports, on the basis of Shair’s mechanistic studies (ref 9) it is
likelythatthesereactionsproceedthroughadditionfollowedbydecarboxylation:(a)
Lubkoll, J.; Wennemers, H. Angew. Chem., Int. Ed. 2007, 46, 6841. (b)
Ricci, A.; Pettersen, D.; Bernardi, L.; Fini, F.; Fochi, M.; Herrera, R. P.;
Sgarzani, V. AdV. Synth. Catal. 2007, 349, 1037.
a Isolated, combined yield of diastereomers. b Diastereomeric ratio
determined by 1H NMR. c Enantiomeric excess of 4 determined by
chiral HPLC. d The absolute and relative configurations were determined
by X-ray crystallography (see the Supporting Information).
(13) Examples of catalytic decarboxylative nucleophile generation in cross-
coupling reactions: (a) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006,
313, 662. (b) Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131,
4194. (c) Shang, R.; Fu, Y.; Li, J.-B.; Zhang, S.-L.; Guo, Q.-X.; Liu, L.
J. Am. Chem. Soc. 2009, 131, 5738. (d) Review: Goossen, L. J.; Rodr´ıguez,
N.; Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100.
Scheme 1. Conversion to ꢀ2,2,3-Amino Acid Derivatives
(14) Examples of Pd-catalyzed decarboxylative nucleophile generation from allyl
esters (racemic reactions): (a) Shimizu, I.; Yamada, T.; Tsuji, J. Tetrahedron
Lett. 1980, 21, 3199. (b) Tsuda, T.; Chujo, Y.; Nishi, S.; Tawara, K.;
Saegusa, T. J. Am. Chem. Soc. 1980, 102, 6381. (c) Lou, S.; Westbrook,
J. A.; Schaus, S. E. J. Am. Chem. Soc. 2004, 126, 11440. (d) Waetzig,
S. R.; Tunge, J. A. J. Am. Chem. Soc. 2007, 129, 14860.
(15) Use of enzymes or catalytic antibodies: (a) Bjo¨rnestedt, R.; Zhong, G.;
Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 1996, 118, 11720. (b)
Serafimov, J. M.; Gillingham, D.; Kuster, S.; Hilvert, D. J. Am. Chem.
Soc. 2008, 130, 7798.
(16) 3a was readily synthesized from commercially available ethyl phenylcy-
anoacetate in two steps. Cyanoacetate derivatives were utilized on the basis
of our hypothesis that the soft-soft interaction between Cu(I) and nitriles
would facilitate decarboxylation (see ref 6). N-Phosphinoyl imines produced
better results than N-sulfonyl and N-Boc imines.
through hydrolysis of the N-diphenylphosphinoyl moiety and the
cyano group under acidic conditions (Scheme 1).
In conclusion, we have developed a catalytic asymmetric
decarboxylative Mannich-type reaction involving nucleophile gen-
eration via Cu(I)-catalyzed extrusion of CO2 from cyanocarboxylic
acids. This method affords ꢀ2,2,3-amino acid precursors containing
contiguous trisubstituted and all-carbon quaternary stereocenters
JA9036675
9
J. AM. CHEM. SOC. VOL. 131, NO. 28, 2009 9611