C O M M U N I C A T I O N S
Scheme 3. Synthesis of Amphidinolide T1 (1) via Stereoselective
Macrocyclization: Intramolecular, Nickel-Catalyzed
Alkyne-Aldehyde Reductive Coupling
ance. E.A.C. and K.C.O., respectively, thank the American Society
for Engineering Education (NDSEG Fellowship) and the Thomas
A. Spencer Endowed UROP Fund (MIT). We also thank the
National Institute of General Medical Sciences (GM-063755), NSF
(CAREER CHE-0134704), Merck Research Laboratories, Johnson
& Johnson, Boehringer Ingelheim, Amgen, Pfizer, and Glaxo-
SmithKline for generous financial support. The NSF (CHE-9809061
and DBI-9729592) and NIH (1S10RR13886-01) provided partial
support for the MIT Department of Chemistry Instrumentation
Facility.
Supporting Information Available: Experimental procedures and
1
data and H NMR spectra of 1, 3, and 6-9 (PDF). This material is
References
(1) Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y. Tetrahedron
Lett. 1986, 27, 5755-5758.
(2) (a) Kobayashi, J.; Ishibashi, M. Chem. ReV. 1993, 93, 1753-1769. (b)
Kobayashi, J. In ComprehensiVe Natural Products Chemistry; Mori, K.,
Ed.; New York: Elsevier, 1999; Vol. 8, pp 619-634. (c) Kobayashi, J.;
Shimbo, K.; Kubota, T.; Tsuda, M. Pure Appl. Chem. 2003, 75, 337-
342.
(3) Macrolactonization: (a) Amphidinolide J: Williams, D. R.; Kissel, W.
S. J. Am. Chem. Soc. 1998, 120, 11198-11199. (b) P: Williams, D. R.;
Myers, B. J.; Mi, L. Org. Lett. 2000, 2, 945-948. (c) K: Williams, D.
R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765-766. (d) T1: Ghosh,
A. K.; Liu, C. J. Am. Chem. Soc. 2003, 125, 2374-2375. (e) A (proposed),
Stille coupling: Lam, H. W.; Pattenden, G. Angew. Chem., Int. Ed. 2002,
41, 508-511. Ring-closing metathesis: (f) A (proposed): Maleczka, R.
E.; Terrell, L. R.; Geng, F.; Ward, J. S., III. Org. Lett. 2002, 4, 2841-
2844. (g) T4: Fu¨rstner, A.; A¨ıssa, C.; Riveiros, R.; Ragot, J. Angew.
Chem., Int. Ed. 2002, 41, 4763-4766. (h) T1: A¨ıssa, C.; Riveiros, R.;
Ragot, J.; Fu¨rstner, A. J. Am. Chem. Soc. 2003, 125, 15512-15520. (i)
A (proposed), Ru-catalyzed alkene-alkyne coupling: Trost, B. M.;
Chisholm, J. D.; Wrobleski, S. T.; Jung, M. J. Am. Chem. Soc. 2002,
124, 12420-12421.
(4) (a) Tsuda, M.; Endo, T.; Kobayashi, J. J. Org. Chem. 2000, 65, 1349-
1352. (b) Kobayashi, J.; Kubota, T.; Endo, T.; Tsuda, M. J. Org. Chem.
2001, 66, 134-142. (c) Kubota, T.; Endo, T.; Tsuda, M.; Shiro, M.;
Kobayashi, J. Tetrahedron 2001, 57, 6175-6179.
(5) (a) Miller, K. M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003,
125, 3442-3443. (b) Chan, J.; Huang, W.-S.; Jamison, T. F. Org. Lett.
2000, 2, 4221-4223.
(6) (a) Colby, E. A.; Jamison, T. F. J. Org. Chem. 2003, 68, 156-166. (b)
Synthesis of (-)-terpestacin via intermolecular alkyne-aldehyde reductive
coupling based on ref 6a: Chan, J.; Jamison, T. F. J. Am. Chem. Soc.
2003, 125, 11514-11515.
(7) Ni-catalyzed alkynal cyclizations (five- and six-membered rings): (a)
Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065-9066.
(b) Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 6098-
6099. (c) Lozanov, M.; Montgomery, J. J. Am. Chem. Soc. 2002, 124,
2106-2107.
Fragment coupling via ester formation between alcohol 3 and
carboxylic acid 7 and conversion of C13 to an aldehyde set the
stage for a nickel-catalyzed reductive macrocyclization of (1,19)-
alkynal 8. To our delight, allylic alcohol 9 was obtained with
complete selectivity for the desired configuration of the C13
carbinol,17 thus completing both assembly of the 19-membered ring
and installation of all of the stereogenic centers of amphidinolide
T1 (Scheme 3).
Two other features of this stereoselective macrocyclization are
noteworthy and compensate for the moderate yield. That the
undesired C13 diastereomer was undetectable was surprising
because intermolecular couplings of closely related compounds were
nearly nonstereoselective (1.5:1). Further, even if the intermolecular
coupling were perfectly selective, the catalytic macrocyclization
led to a significantly shorter synthesis because it obviated protection
(and subsequent unmasking) of carboxylic acid 7 and the free
hydroxyl group in 3.
With the macrocycle in hand, the only remaining task was
conversion of the C12 and C16 benzylidene groups to a ketone
and methylidene, respectively. After investigation of several end-
game strategies, we found that protection of the C13 hydroxyl,
global ozonolysis, selective methylenation at C16 using a modifica-
tion of Takai’s method,18 and finally HF-pyridine removal of the
TBS protective group afforded amphidinolide T1 (1), whose
spectroscopic and spectrometric data were identical in every respect
to those reported by Kobayashi for the naturally occurring enan-
tiomer.4
In conclusion, two nickel-catalyzed, carbon-carbon bond-
forming reactions were instrumental in an enantioselective synthesis
of amphidinolide T1 (1). A catalytic alkyne-epoxide reductive
coupling (intermolecular) completed the preparation of one half of
1, and a catalytic alkyne-aldehyde reductive coupling (intra-
molecular) simultaneously assembled the macrocycle and estab-
lished the configuration of a stereogenic center with complete
selectivity in the desired fashion. This is the most direct synthesis
of an amphidinolide T natural product to date, in terms of both
longest linear sequence (16 steps from 4) and total number of
synthetic operations (20).3d,g,h We are currently developing an analo-
gous, modular strategy for the synthesis of the other amphidinolide
T natural products.4b,c
(8) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076-8077.
(9) (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science
1997, 277, 936-938. (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.;
Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E.
N. J. Am. Chem. Soc. 2002, 124, 1307-1315.
(10) (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982,
104, 1737-1739. (b) Alkylation using 1-bromo-2-butyne: Savignac, M.;
Durand, J.-O.; Geneˆt, J.-P. Tetrahedron: Asymmetry 1994, 5, 717-722.
(11) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel, K. A. J. Am. Chem.
Soc. 1999, 121, 12208-12209.
(12) Schmitt, A.; Reissig, H.-U. Synlett 1990, 40-42.
(13) Marshall, J. A.; Shearer, B. G.; Crooks, S. L. J. Org. Chem. 1987, 52,
1236-1245.
(14) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919-5923.
(15) Danheiser, R. L.; Carini, D. J. J. Org. Chem. 1980, 45, 3925-3927.
(16) Myers, A. G.; Yang, B. Y.; Chen, H.; McKinstry, L.; Kopecky, D. J.;
Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496-6511.
(17) Assignment based on Mosher ester analysis of 9 and conversion to 1.
(18) (a) Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org. Chem. 1994,
59, 2668-2670. (b) Zirconium alkylidene reagents: Hartner, F. W.;
Schwartz, J.; Clift, S. M. J. Am. Chem. Soc. 1983, 105, 640-641.
Acknowledgment. We thank Anna K. Hirsch (Cambridge
University-MIT Exchange Program) for experimental assist-
JA039716V
9
J. AM. CHEM. SOC. VOL. 126, NO. 4, 2004 999