5838
J. Am. Chem. Soc. 1998, 120, 5838-5839
Scheme 1
Nitrogen-philic Cyclization of Acyl Radicals onto
NdC Bond. New Synthesis of 2-Pyrrolidinones by
Radical Carbonylation/Annulation Method
Ilhyong Ryu,* Kazutoshi Matsu, Satoshi Minakata, and
Mitsuo Komatsu*
Department of Applied Chemistry
Faculty of Engineering, Osaka UniVersity
Suita, Osaka 565-0871, Japan
ReceiVed March 5, 1998
Radical cyclization reactions have become part of the repertoire
of the synthetic organic chemist, even for the synthesis of
nitrogen-containing heterocycles such as alkaloids.1,2 As for five-
membered ring formation, however, the strategic flexibility of
the systems reported thus far is still insufficient, since useful
strategies are limited to straightforward extensions of the 5-hex-
enyl radical cyclization in which a carbon atom at the 2, 3, or 4
position is replaced by a nitrogen atom (type 1, Scheme 1). In
pursuit of alternate radical cyclization methodologies for the
synthesis of nitrogen heterocycles, radical cyclizations onto N-C
double bonds have been examined by Takano,3 Warkentin,4
Bowman,5 and their co-workers (type 2, Scheme 1).6 Unfortu-
nately, this type of alkyl radical cyclization is often plagued by
poor selectivities giving mixtures of nitrogen-containing hetero-
cycles via 5-exo and 6-endo cyclizations. This suggests that the
rates of both modes of cyclization are too close to be controlled,
limiting the synthetic utility of this otherwise unique strategy.
It occurred to us that the introduction of a polar component
into radical cyclization chemistry would create new selective
cyclization systems. The use of an acyl radical which is δ+/δ-
polarized should increase the selectivity by matching with the
δ-/δ+ character of the N-C acceptor double bond.7 This would
create an “N-philic” acyl radical cyclization (eq 1). With this
(1) For leading reviews including radical cyclizations, see: (a) Beckwith,
A. L. J. Tetrahedron 1981, 37, 3073. (b) Hart, D. J. Science 1984, 223, 4639.
(c) Curran, D. P. Synthesis 1988, 417, 489. (d) Jasperse, C. P.; Curran, D. P.;
Fevig, T. L. Chem. ReV. 1991, 91, 1237. (e) Motherwell, W. B.; Crich, D.
Free-Radical Chain Reactions in Organic Synthesis; Academic: London, 1992.
(f) Beckwith, A. L. J. Chem. Soc. ReV. 1993, 143. (g) Curran, D. P.; Porter,
N.; Giese, B. Stereochemistry of Radical Reactions; VCH: Weinheim, 1996.
(h) Giese, B.; Kopping, B.; Go¨bel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K.
J.; Trach, F. Org. React. 1996, 48, 301.
(2) For recent reviews, see: (a) Sibi, M. P.; Ji, J. In Progress in Heterocyclic
Chemistry; Suschitzky, H., Gribble, G. W., Eds.; Pergamon Press: Oxford,
1996; Vol. 8. (b) Renaud, P.; Giraud, L. Synthesis 1996, 913. (c) Fallis, A. G.
Brinza, I. M. Tetrahedron 1997, 53, 17543. For selected recent examples on
the synthesis of nitrogen heterocycles using radical cyclizations, see: (d)
Parsons, P. J.; Penkett, C. S.; Cramp, M. C.; West, R. I.; Warrington, J.;
Saraiva, M. C. Synlett 1995, 507. (e) Curran, D. P.; Josien, H.; Ko, S.-B.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2683. (f) Boger, D. L.; McKie, J. A.
J. Org. Chem. 1995, 60, 1271. (g) Sato, T.; Kugo, Y.; Nakaumi, E.; Ishibashi,
H.; Ikeda, M. J. Chem. Soc., Perkin Trans. 1 1995, 1801. (h) Minisci, F.;
Fontana, F.; Coppa, F.; Yan, Y. M. J. Org. Chem. 1995, 60, 5430. (i) Yuasa,
Y.; Ando, J.; Shibuya, S. J. Chem. Soc., Perkin Trans. 1 1996, 465. (j) Kizil,
M.; Lampard, C.; Murphy, J. A. Tetrahedron Lett. 1996, 37, 2511. (k)
Czernecki, S.; Ayadi, E.; Xie, J. Tetrahedron Lett. 1996, 37, 9193. (l) Clive,
D. L. J.; Coltart, D. M. Tetrahedron Lett. 1998, 39, 2519. (m) Aurrecoechea,
J. M.; Fernandez-Acebes, A. Synlett 1996, 39. (n) Della, E. W.; Knill, A. M.
J. Org. Chem. 1996, 61, 7529. (o) Robertson, J.; Peplow, M. A.; Pillai, J.
Tetrahedron Lett. 1996, 37, 5825. (p) Pandey, G.; Reddy, G. D.; Chakrabarti,
D. J. Chem. Soc., Perkin Trans. 1 1996, 219.
working hypothesis in mind, we examined the 5-exo/6-endo
cyclization of acyl radicals onto imine N-C bonds and found
that indeed the cyclization proceeds with complete selectiVity for
the nitrogen-philic mode (5-exo). We report herein a novel
synthesis of 2-pyrrolidinones using a 4 + 1 type carbonylation/
annulation method in which polarity is a key factor in controlling
the selectivity of the radical cyclization.
The reaction of 3-bromopropylimine 1a with carbon monoxide
was carried out in the presence of tributyltin hydride and a
catalytic amount of AIBN (2,2′-azobisisobutyronitrile) using an
autoclave equipped with a glass liner. Under the conditions
shown in eq 2, the desired 2-pyrrolidinone 2a was obtained in
81% yield after isolation by flash chromatography on silica gel.8
(3) (a) Takano, S.; Suzuki, M.; Kijima, A.; Ogasawara, K. Chem. Lett.
1990, 315. (b) Takano, S.; Suzuki, M.; Ogasawara, K. Heterocycles 1994,
37, 149.
(4) (a) Tomaszewski, M. J.; Warkentin, J. Tetrahedron Lett. 1992, 33, 2123.
(b) Tomaszewski, M. J.; Warkentin, J. J. Chem. Soc., Chem. Commun. 1993,
966. (c) Tomaszewski, M. J.; Warkentin, J.; Werstiuk, N. H. Aust. J. Chem.
1995, 48, 291.
(5) (a) Bowman, W. R.; Stephenson, P. T.; Terrett, N. K.; Young, A. R.
Tetrahedron Lett. 1994, 35, 6369. (b) Bowman, W. R.; Stephenson, P. T.;
Terrett, N. K.; Young, A. R. Tetrahedron 1995, 51, 7959. (c) Bowman, W.
R.; Stephenson, P. T.; Young, A. R. Tetrahedron 1996, 52, 11445.
(6) Nitrogen radical cyclizations constitute the third type of strategy for
the synthesis of nitrogen-containing heterocycles, see: (a) Beckwith, A. L.
J.; Maxwell, B. J.; Tsanakatsidis, J. Aust. J. Chem. 1991, 44, 1809. (b) Esker,
J. L.; Newcomb, M. AdV. Heterocycl. Chem. 1993, 58, 1. (c) Bowman, W.
R.; Clark, D. N.; Marmon, R. J. Tetrahedron 1994, 50, 1275. (d) Bowman,
W. R.; Clark, D. N.; Marmon, R. J. Tetrahedron 1994, 50, 1295. (e) Bowman,
W. R.; Broadhurst, M. J.; Coghlan, D. R.; Lewis, K. A. Tetrahedron Lett.
1997, 38, 6301. (f) Maxwell, B. J.; Tsanaktsidis, J. J. Am. Chem. Soc. 1996,
118, 4276. (g) Tokuda, M.; Fujita, H.; Suginome, H. J. Chem. Soc., Perkin
Trans. 1 1994, 777. (h) Togo, H.; Hoshina, Y.; Yokoyama, M. Tetrahedron
Lett. 1996, 37, 6129. (i) Zard, S. Z. Synlett 1996, 1148. (j) Kaim, L. E.; Meyer,
C. J. Org. Chem. 1996, 61, 1556. Also see a unique strategy based on radical
cyclization onto azide functionality: (k) Kim, S.; Joe, G. H.; Do, J. Y. J. Am.
Chem. Soc. 1994, 116, 5521. (l) Kizil, M.; Murphy, J. A. J. Chem. Soc., Chem.
Commun. 1995, 1409.
Acyl radical cyclization took place at the nitrogen atom selec-
tively. None of the corresponding six-membered ring product
resulting from “carbon-attack” was observed.
As shown in Table 1, this 2-pyrrolidinone synthesis by a 4 +
1 annulation method is quite general and the yields are good to
(7) The polar nature of acyl radical is acknowledged in the slow rate of
decarbonylation in polar solvents, see: (a) Tsentalovic, Y. P.; Fischer, H. J.
Chem. Soc., Perkin Trans. 2 1994, 729. (b) Linazzi, L.; Ingold, K. U.; Scaiano,
J. C. J. Phys. Chem. 1983, 87, 529. (c) Turro, N. J.; Gould, I. R.; Baretz, B.
H. J. Phys. Chem. 1983, 87, 531.
(8) For typical experimental procedure, see the Supporting Information.
S0002-7863(98)00731-8 CCC: $15.00 © 1998 American Chemical Society
Published on Web 06/02/1998