Design, synthesis, and structure of novel cesium receptors
355
2. Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond; Oxford
University Press: Oxford, 1999.
3. Bryan, J.C.; Sachleben, R.A.; Lavis, J.M.; Davis, M.C.; Burns,
J.H.; Hay, B.P. Inorg. Chem. 1998, 37, 2749.
4. Hay, B.P.; Zhang, D.; Rustad, J.R. Inorg. Chem. 1996, 35,
2650.
and an edgeface arene interaction is formed be-
---
---
tween C20 25 and C1 6. Metrical parame-
ters for all of these interactions are presented in
Table 3.
Unlike the podand 1, MM3 optimization
starting from the crystal structure coordinates
does not well reproduce the crystal structure.
The average difference in selected torsion an-
gles is 9.2 with the largest discrepancies occur-
5. Hay, B.P. In Metal–Ion Separation and Preconcentration,
Progress and Opportunities, ACS Symposium Series 716; Bond,
A.H.; Dietz, M.L.; Rogers, R.D., Eds.; American Chemical So-
ciety: Washington, DC, 1999; pp 102–113.
6. Bryan, J.C.; Sachleben, R.A.; Hay, B.P. Inorg. Chim. Acta 1999,
290, 86.
7. Bryan, J.C.; Delmau, L.H.; Hay, B.P.; Moyer, B.A.;
Rogers, L.M.; Rogers, R.D. Struct. Chem. 1999, 10,
187.
8. Sachleben, R.A.; Urvoas, A.; Bryan, J.C.; Haverlock, T.J.; Hay,
B.P.; Moyer, B.A. Chem. Commun. 1999, 1751.
9. Thue´ry, P.; Nierlich, M.; Lamare, V.; Dozol. J.-F.; Asfari, Z.;
Vicens, J. J. Inclusion Phenom. 2000, 36, 375.
10. Bryan, J.C.; Chen, T.; Levitskaia, T.G.; Haverlock, T.J.; Barnes,
C.E.; Moyer, B. A. J. Inclusion Phenom. 2002, 42, 241.
11. Harms, K. XCAD4, Universita¨t Marburg; Germany,
1995.
12. SHELXTL (Version 5.1, IRIX); Bruker AXS; Madison, WI,
1997.
13. Spek, A. L. PLATON: A Multi-Purpose Crystallographic Tool;
Universiteit Utrecht; The Netherlands, 2001.
14. Hay, B.P.; Rustad, J.R. J. Am. Chem. Soc. 1994, 116,
6116.
15. Hay, B.P.; Yang, L.; Zhang, D.; Rustad, J.R.; Wasserman, E. J.
Mol. Struct. (THEOCHEM) 1997, 417, 19.
16. Hay, B.P.; Yang, L.; Allinger, N.L.; Lii, J.-H. J. Mol. Struct.
(THEOCHEM) 1998, 428, 203.
17. Timofeeva, T.V.; Lii, J.-H.; Allinger, N.L. J. Am. Chem. Soc.
1995, 117, 7452.
18. Hay, B.P.; Firman, T.K. Inorg. Chem. 2002, 41, 5502.
19. Dougherty, D.A. Science 1996, 271, 163.
20. Nicholas, J.B.; Dixon, D.A.; Hay, B.P. J. Phys. Chem. A 1999,
103, 1394.
21. Nicholas, J.B.; Hay, B.P. J. Phys. Chem. A 1999, 103,
3554.
22. Hay, B.P. In Metal Separation Technologies Beyond 2000:
Integrating Novel Chemistry With Processing; Liddell, K.C.;
Chaiko, D.J., Eds.; Minerals, Metals, Materials Society:
Warrendale, PA, 1999; pp 3–13.
23. Sachleben, R.A.; Moyer, B.A. In Metal–Ion Separation and
Preconcentration, Progress and Opportunities, ACS Sympo-
sium Series 716; Bond, A.H; Dietz, M.L.; Rogers, R.D., Eds.;
American Chemical Society: Washington, DC, 1999; pp 114–
132.
24. Bond, A.H.; Chiarizia, R.; Huber, V.J.; Dietz, M.L.; Herlinger,
A.W.; Hay, B.P. Anal. Chem. 1999, 71, 2757.
25. Dietz, M.L.; Bond, A.H.; Hay, B.P.; Chiarizia, R.;
Huber, V.J.; Herlinger, A.W. Chem. Commun. 1999, 13,
1177.
---
---
ring for O5 C19 (25.4 ), O1 C7 (19.2 ), and
---
O5 C20 (18.7 ) (see Table 2). Superposition of
thecrystalstructureandtheMM3optimizedstruc-
ture yields a root-mean-squared displacement of
˚
0.47 A. These differences suggest the geometry
observed in the crystal to be distorted by pack-
ing forces such as those detailed in the previous
paragraph and in Table 3.
Examination of the observed metal-free form
with the bound form of 2 reveals that signifi-
cant structural changes are required to get to the
---
binding conformer; the O3 C16 bond goes from
---
gauche( ) to anti, the C16 C17 bond goes from
---
gauche( ) to gauche(+), and the O4 C18 bond
goes from anti to gauche(+). These structural
changes do not entail a large difference in energy,
however, and the metal-free conformation is only
0.88 kcal/mol lower in energy than the predicted
cesium binding conformer. Thus, the energy re-
quired for conformational reorganization of 2 is in
the range of that observed for tribenzo-21-crown-
7 (1.1–1.5 kcal/mol)3 and tetrabenzo-24-crown-8
(0 kcal/mol).6 Given the degree of complementar-
ity, preorganization, and the fact that the cesium–
interaction is almost identical in strength to the
cesium–ether interaction,20,21 the results of this
study suggest that 2 may be expected to complex
cesium as well as tribenzo-21-crown-7.
26. Hay, B.P.; Dixon, D.A.; Vargas, R.; Garza, J.; Raymond, K.N.
Inorg. Chem. 2001, 40, 3922.
References
27. Lumetta, G.J.; Rapko, B.M.; Garza, P.A.; Hay, B.P.; Gilbertson,
R.D.; Weakley, T.J.R.; Hutchison, J.E.J. Am. Chem. Soc. 2002,
124, 5644.
1. Bryan, J.C.; Marchand, A.P.; Hazlewood, A. Acta Crystallogr.
Sect. E 2001, 37, o13–o15; and references therein.