R
catalyst was removed by filtration (Celiteꢀ, CH2Cl2).The filtrate
4 (a) C. U. Pittman and L. R. Smith, J. Am. Chem. Soc., 1975, 97, 1749;
(b) J. Rebek and F. Gavina, J. Am. Chem. Soc., 1975, 97, 3453.
5 J. C. Stowell and H. F. Hauck, J. Org. Chem., 1981, 46, 2428.
6 For representative references in the field of metal free cascade processes,
see: (a) G. Faina, B. Jochanan and A. David, Angew. Chem., Int. Ed.,
2001, 40, 3647; (b) H. Brett, J. G. Steven, X. Yu, M. Meredith, J. H.
Craig and M. J. F. Jean, Angew. Chem., Int. Ed., 2005, 44, 6384; (c) K.
Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani and K. Kaneda,
J. Am. Chem. Soc., 2005, 127, 9674; (d) T. S. P. Nam, S. G. Christopher,
V. N. Joseph, Z. J. Zhang and W. J. Christopher, Angew. Chem., Int. Ed.,
2006, 45, 2209; (e) K. Z. Ryan, H. Son-Jong and E. D. Mark, Angew.
Chem., Int. Ed., 2006, 45, 6332; (f) S. Sankaranarayanapillai, W. Alex,
S. Andreas, E. Stefan and R. T. Werner, Chem.–Eur. J., 2009, 15, 7052;
(g) K. Motokura, M. Tada and Y. Iwasawa, J. Am. Chem. Soc., 2009,
131, 7944; (h) L. Xin, D. Hui, Z. Bo, L. Jiuyuan, Z. Long, L. Sanzhong
and C. Jin-Pei, Chem.–Eur. J., 2010, 16, 450.
was concentrated. Purification by flash chromatography gave
pyrazoline 4f as described in the following characterizations data.
3,4-Diphenyl-1-tosyl-4,5-dihydro-1H-pyrazole (4f). Pale yel-
low solid (84.9 mg, 90%); Rf 0.58 (Petroleum ether/EtOAc: 1/1);
mp 168–169 ◦C; IR (KBr) nmax/cm-1 1597, 1493, 1446, 1360, 1166,
1094, 1027, 755, 671, 597, 548; dH(300 MHz; CDCl3) 7.85 (2 H, d,
J 8.1), 7.60–7.57 (2 H, m), 7.34–7.21 (8 H, m), 7.01–6.98 (2 H, m),
4.50 (1 H, dd, J 10.5 and J 4.9), 3.86 (1 H, t, J 10.3), 3.77 (1 H, dd,
J 10.0 and J 4.9), 2.43 (3 H, s); dC(75.4 MHz; CDCl3) 159.5 (C),
144.6 (C), 139.0 (C), 131.1 (C), 130.3 (CH), 130.2 (C), 129.7 (CH),
129.3 (CH), 129.0 (CH), 128.6 (CH), 127.9 (CH), 127.6 (CH),
127.5 (CH), 58.0 (CH2), 51.9 (CH), 21.7 (CH3); HRMS (ESI+):
Calcd for C22H21N2O2S [M+H]+: 377.1324; Found: 377.1312.
7 K. Akagawa, S. Sakamoto and K. Kudo, Tetrahedron Lett., 2007, 48,
985.
8 (a) W. P. Adam, B. Jutta and J. D. Darren, Angew. Chem., Int. Ed.,
2007, 46, 5428; (b) A. W. Pilling, J. Bo¨hmer and D. J. Dixon, Chem.
Commun., 2008, 832and references cited therein.
9 Review on pyrazolines: (a) A. Le´vai, J. Heterocycl. Chem., 2002, 39, 1;
(b) S. Kumar, S. Bawa, S. Drahu, R. Kumar and H. Gupta, Recent Pat.
Anti-Infect. Drug Discovery, 2009, 4, 154.
10 For recent literature, see: O. Mahe´, D. Frath, I. Dez, F. Marsais,
V. Levacher and J.-F. Brie`re, Org. Biomol. Chem., 2009, 7, 3648and
references cited therein.
1-(Methylsulfonyl)-3,4-diphenyl-4,5-dihydro-1H-pyrazole (4s).
White solid (64.0 mg, 85%); Rf 0.50 (Petroleum ether/EtOAc:
1/1); mp 170–171 ◦C; IR (KBr) nmax/cm-1 1495, 1446, 1340, 1158,
1093, 1015, 961, 840, 784, 767, 753, 697, 590, 552; dH(300 MHz;
CDCl3) 7.69–7.66 (2 H, m), 7.34–7.23 (8 H, m), 4.73 (1 H, dd,
J 10.5 and J 4.3), 4.14 (1 H, dd, J 10.3 and J 10.0), 3.91 (1 H,
dd, J 10.0 and J 4.2), 3.15 (3 H, s); dC(75.4 MHz; CDCl3) 160.1
(C), 138.6 (C), 130.6 (CH), 130.0 (C), 129.4 (CH), 128.7 (CH),
128.1 (CH), 127.7 (CH), 127.6 (CH), 56.6 (CH2), 52.1 (CH), 35.9
(CH3); HRMS (ESI+): Calcd for C16H17N2O2S [M+H]+: 301.1011;
Found: 301.1000.
11 (a) J. M. Renga, K. L. McLaren and M. J. Ricks, Org. Process Res.
Dev., 2003, 7, 267; (b) X. Du, C. Guo, E. Hansell, P. S. Doyle, C. R.
Caffrey, T. P. Holler, J. H. McKerrow and F. E. Cohen, J. Med. Chem.,
2002, 45, 2695; (c) D. G. Jones, X. Liang, E. L. Stewart, R. A. Noe,
L. S. Kallander, K. P. Madauss, S. P. Williams, S. K. Thompson, D. W.
Gray and W. J. Hoekstra, Bioorg. Med. Chem. Lett., 2005, 15, 3203;
(d) H. M. L. Jos and G. K. Chris, Chem. Rec., 2008, 8, 156; (e) S. R.
Donohue, V. W. Pike, S. J. Finnema, P. Truong, J. Andersson, B. z.
Gulya´s and C. Halldin, J. Med. Chem., 2008, 51, 5608.
N-Cyclohexyl-3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carbo-
xamide (4t). Pale yellow solid (80.0 mg, 92%); Rf 0.45 (Petroleum
ether/EtOAc: 1/1); mp 160–161 ◦C; IR (KBr) nmax/cm-1 3384,
2934, 2852, 1651, 1526, 1395, 1130, 691; dH(300 MHz; CDCl3)
7.63–7.60 (2 H, m), 7.30–7.18 (8 H, m), 6.03 (1 H, d, J 8.3), 4.66
(1 H, dd, J 11.6 and J 5.3), 4.32 (1 H, dd, J 11.5 and J 11.3),
4.01 (1 H, dd, J 11.1 and J 5.0), 3.80–3.70 (1 H, m), 2.10–1.95
(2 H, m), 1.83–1.57 (3 H, m), 1.50–1.16 (5 H, m); dC(75.4 MHz;
CDCl3) 154.5 (C), 153.9 (C), 140.5 (C), 131.0 (C), 129.4 (CH),
129.2 (CH), 128.5 (CH), 127.5 (CH), 127.4 (CH), 126.9 (CH), 54.8
(CH2), 51.0 (CH), 48.9 (CH), 34.0 (CH2), 33.9 (CH2), 25.7 (CH2),
25.16 (CH2), 25.13 (CH2); HRMS (ESI+): Calcd for C22H26N3O
[M+H]+: 348.2076; Found: 348.2079.
12 G.-L. Zhao and M. Shi, Tetrahedron, 2005, 61, 7277.
13 Reviews on supported organic catalysts: (a) M. Benaglia, A. Puglisi and
F. Cozzi, Chem. Rev., 2003, 103, 3401; (b) M. Benaglia, New J. Chem.,
2006, 30, 1525; (c) F. Cozzi, Adv. Synth. Catal., 2006, 348, 1367.
14 For reviews, see: (a) L. F. Tietze, Chem. Rev., 1996, 96, 115; (b) K. J.
Nicolaou, D. J. Edmonds and P. G. Bulger, Angew. Chem., Int. Ed.,
2006, 45, 7134; (c) J. C. Chapman and C. G. Frost, Synthesis, 2007, 1
and references cited therein.
15 Selected recent review on organocatalysis: Special issue on organocatal-
ysis: (a) B. List, Chem. Rev., 2007, 107, 5413; (b) Enantioselective
Organocatalysis; ed. P. I. Dalko, Ed.; Wiley-VCH: Weinheim, Germany,
2007; (c) S. Bertelsen and K. A. Jørgensen, Chem. Soc. Rev., 2009, 38,
2178 and references cited therein.
16 For the elegant use of supported reagents methodologies for the
synthesis of 3,5-substituted pyrazolines following a sequential multistep
strategy, see: (a) F. Haunert, M. H. Bolli, B. Hinzen and S. V. Ley,
J. Chem. Soc., Perkin Trans. 1, 1998, 2235; (b) U. Bauer, B. J. Egner, I.
Nilsson and M. Berghult, Tetrahedron Lett., 2000, 41, 2713.
17 We previously reported on the synthesis of 3,5-diarylpyrazolines by
addition of N-acetylhydrazines to chalcone derivatives catalysed by
TBD guanidine. The same conditions applied to terminal enones 2 did
not furnish the corresponding 3,4-substituted pyrazolines and led to a
rapid decomposition of the unsaturated ketone. Enones 2 are indeed
markedly prone to polymerisation under basic conditions or in the
presence of strong nucleophiles such as monosubstituted hydrazines.
See reference 10.
Acknowledgements
This research was supported by the French National Research
Agency (ANR) as part of the ANR-08-JCJC-004301 project. We
also gratefully acknowledge financial support from CNRS (Centre
National de la Recherche Scientifique) and the “Ministe`re de la
Recherche”.
18 (a) A. C. Arnold, C. Grosscurt, R. van Hes and K. Wellinga, J. Agric.
Food Chem., 1979, 27, 406; (b) J. H. M. Lange, H. K. A. C. Coolen,
H. H. van Stuivenberg, J. A. R. Dijksman, A. H. J. Herremans, E.
Ronken, H. G. Keizer, K. Tipker, A. C. McCreary, W. Veerman, H. C.
Wals, B. Stork, P. C. Verveer, A. P. den Hartog, N. M. J. de Jong, T. J. P.
Adolfs, J. Hoogendoorn and C. G. Kruse, J. Med. Chem., 2004, 47,
627; (c) J. A. R. Rodrigues, E. P. Siqueira-Filho, M. de Mancilha and
P. J. S. Moran, Synth. Commun., 2003, 33, 331.
19 R. Berger, P. M. A. Rabbat and J. L. Leighton, J. Am. Chem. Soc., 2003,
125, 9596.
20 G. Cignarella, D. Barlocco, M. M. Curzu and G. A. Pinna, Synthesis,
1989, 320.
Notes and references
1 (a) K. Andreas, M. Holger and W. Ru¨diger, Angew. Chem., Int. Ed.,
2001, 40, 650; (b) K. Andreas, S. Wladimir and M. Klaas, Chem.–
Eur. J., 2006, 12, 5972; (c) I. R. Baxendale and S. V. Ley, Ernst Schering
Found. Symp. Proc., 2007, 2006–3, 151.
2 (a) M. A. Kraus and A. Patchornik, J. Am. Chem. Soc., 1971, 93, 7325;
(b) B. J. Cohen, M. A. Kraus and A. Patchornik, J. Am. Chem. Soc.,
1977, 99, 4165; (c) For a recent highlights, see: V. Voit, Angew. Chem.,
Int. Ed., 2006, 45, 4238.
3 For the use of three resin-bound reagents, see also: J. J. Parlow,
Tetrahedron Lett., 1995, 36, 1395.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 3287–3293 | 3293
©