H. Shimizu, S. Kobayashi / Tetrahedron Letters 46 (2005) 7593–7595
7595
Cajigal, M. L.; Abboud, K. A. Organometallics 1996, 15,
1905–1912; (c) Clark, J. R.; Franwick, P. E.; Rothwell, I. P.
Organometallics 1996, 15, 3232–3237; (d) Neithamer, D. R.;
Ph
Ph
TaCl5 (1.5 equiv)
Zn (1.8 equiv)
N
NH
10% KOH aq.
H
+
Ph NCO
N
Ph
benzene-DME,
50 ºC, 36 h
´
´
Parkanyi, L.; Mitchell, J. F.; Wolczanski, P. T. J. Am.
Chem. Soc. 1988, 110, 4421–4423; (e) Stricker, J. R.; Bruck,
M. A.; Wigley, D. E. J. Am. Chem. Soc. 1990, 112, 2814–
2816; (f) Smith, D. P.; Stricker, J. R.; Gray, S. D.; Bruck,
M. A.; Holmes, R. S.; Wigley, D. E. Organometallics 1992,
11, 1275–1288.
O
48% yield
Scheme 2. The reaction of a ketimine with an isocyanate.
good yield (entry 14), whereas an aliphatic imine with-
out a branch at the a-position such as hydrocinnamalde-
hyde resulted in the formation of a complex mixture. In
addition, it was found that aldimines derived from chiral
amines moderately influenced the stereochemical out-
come of subsequent additions of Ta–imine complexes
to isocyanates (entries 6–8, 15–17). These preliminary
results suggested that stereoselective synthesis of a-ami-
no amides using low-valent tantalum–imine complexes
might be possible. The ketimine derived from cyclohex-
anone and aniline reacted with low-valent tantalum fol-
lowed by phenyl isocyanate to give the desired product
in moderate yield (Scheme 2). This result suggests that
this method is useful for the preparation of a-amino-
a,a-disubstituted amide derivatives.1,5,6
3. (a) Takahashi, Y.; Onoyama, N.; Ishikawa, Y.; Motojima,
S.; Sugiyama, K. Chem. Lett. 1978, 525–528; (b) Mayer, J.
M.; Curtis, C. J.; Bercaw, J. E. J. Am. Chem. Soc. 1983,
105, 2651–2660; (c) Chamberlain, L. R.; Rothwell, I. P.;
Huffman, J. C. J. Chem. Soc., Chem. Commun. 1986, 1203–
´
´
´
´
1205; (d) Gomez, M.; Gomez-Sal, P.; Jimenez, G.; Martın,
´
A.; Royo, P.; Sanchez-Nieves, J. Organometallics 1996, 15,
3579–3587.
4. Takai, K.; Ishiyama, T.; Yasue, H.; Nobunaka, T.; Itoh, M.
Organometallics 1998, 17, 5128–5132.
5. Recent reports about the synthesis of a-amino-a,a-disub-
stituted acids, see: (a) Miyabe, H.; Asada, R.; Takemoto, Y.
Tetrahedron 2005, 61, 385–393; (b) Belokon, Y. N.;
´
ˇ
´
Bespalova, N. B.; Churkina, T. D.; Cısarova, I.; Ezernits-
kaya, M. G.; Harutyunyan, S. R.; Hrdina, R.; Kagan, H.
B.; Kocˇovsky´, P.; Kochetkov, K. A.; Larionov, O. V.;
´ˇ
Lyssenko, K. A.; North, M.; Polasek, M.; Peregudov, A. S.;
Prisyazhnyuk, V. V.; Vyskocˇil, S. J. Am. Chem. Soc. 2003,
125, 12860–12871; (c) Ellis, T. K.; Martin, C. H.; Tsai, G.
M.; Ueki, H.; Soloschonok, V. A. J. Org. Chem. 2003, 68,
6208–6214; (d) Clark, J. S.; Middleton, M. D. Org. Lett.
2002, 4, 765–768; (e) Fu, Y.; Hammarstro¨m, G. J.; Miller,
T. J.; Froncezek, F. R. J. Org. Chem. 2001, 66, 7118–
7124.
In summary, we have shown that a-amino amides were
readily prepared from imines and isocyanates using low-
valent tantalum generated from TaCl5 and Zn. A wide
variety of imines and isocyanates were applicable, and
various a-amino amides were synthesized in high yields.
Further investigations to develop an asymmetric version
of this reaction are now in progress.
6. Typical experimental procedure (Table 1, entry 6): Under
argon atmosphere, DME (0.25 mL) was added to a
suspension of TaCl5 (144 mg, 0.40 mmol) and Zn (32 mg,
0.49 mmol) in benzene (0.25 mL), and the mixture was
stirred at room temperature for 1 h. N-Benzylidenebenzyl-
amine (93 mg, 0.48 mmol) in benzene (0.50 mL) was added
to the resulting green-brown suspension at the same
temperature and the mixture was stirred for 1 h. The color
of the suspension changed to dark red. Phenyl isocyanate
(48 mg, 0.40 mmol) in benzene (0.50 mL) was then added
and the mixture was stirred at room temperature for 24 h.
The reaction was stopped by addition of aqueous 10%
KOH (5 mL) and ether (5 mL), and the mixture was stirred
vigorously for 30 min until the brown mixture became
white suspension. The white solid was filtered off through
CeliteÒ and the residue was washed with ether (10 mL,
three times). The filtrate and the washes were combined and
extracted with ether (10 mL, two times). The organic layer
was combined and washed with brine and dried over
Na2SO4. The crude product was purified by P-TLC
(CH2Cl2–EtOH, 30:1) to afford 2-(benzylamino)-N,2-diphen-
ylacetamide (115 mg, 90%). Off-white solid; Mp: 80–
82 °C; 1H NMR (400 MHz, CDCl3): d 3.85 (s, 2H), 4.33
(s, 1H), 7.01–7.60 (m, 15H), 9.47 (br s, 1H); 13C NMR
(400 MHz, CDCl3): d 52.7, 67.5, 119.4, 124.1, 127.2, 127.5,
128.1, 128.7, 128.8, 128.9, 137.6, 138.8, 170.0; IR (KBr)
3303, 3261, 1672, 1603, 1533, 1495, 1443, 1119, 924, 739,
694 cmÀ1; ESIMS m/z 317 ([M+H]+). Anal. Calcd for
C21H20N2O: C, 79.44; H, 6.00; N, 9.26. Found: C, 79.50; H,
6.20; N, 9.22.
Acknowledgements
This work was partially supported by a Grant-in-Aid for
Scientific Research from Japan Society for the Promo-
tion of Science (JSPS). The authors thank Ms. Miho
Ohsumi for her technical support.
References and notes
1. (a) Williams, R. M. In Synthesis of Optically Active a-
Amino Acids; Baldwin, J. E., Ed.; Organic Chemistry Series;
Pergamon Press: Oxford, 1989; (b) Williams, R. M.;
Hendrix, J. A. Chem. Rev. 1992, 92, 889–917; (c) Duthaler,
R. O. Tetrahedron 1994, 50, 1539–1650; (d) Seebach, D.;
Sting, A. R.; Hoffmann, M. Angew. Chem., Int. Ed. 1996,
35, 2708–2748; (e) Arend, M. Angew. Chem., Int. Ed. 1999,
38, 2873–2874; (f) Jacobsen, E. N.; Pfaltz, A.; Yamamoto,
H. In Comprehensive Asymmetric Catalysis; Springer:
Berlin, 1999; Vols. 1–3; (g) Catalytic Asymmetric Synthesis;
2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; (h)
Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013–3028; (i)
OÕDonnell, M. J. Acc. Chem. Res. 2004, 37, 506–517, and
references cited therein.
´
´
2. (a) Galakhov, M. V.; Gomez, M.; Gomez-Sal, P.; Velasco,
P. Organometallics 2005, 24, 848–856; (b) Boncella, J. M.;