J.-Y. Jin et al. / Bioorg. Med. Chem. 11 (2003) 4377–4381
4381
39.78, 37.71. [a]2D0 À7.06 (c, 0.11, CHCl3). HRMS calcd
for C12H16O3S: 240.0820. Found: 240.0820. (2R,4S)-3:
Mp66–68 C. [a]D =+8.39 (c 0.02, CHCl3). Anal. calcd
for C12H16O3S: C, 59.97; H, 6.71; found: C, 60.03; H,
6.77. (2R,4R)-3: (oil) yield, 41%. [a]2D0=+7.34 (c
0.15%, CHCl3). HRMS, calcd for C12H16O3S:
240.0820, found: 240.0820.
consumed was less than 10%. The Ki values were
then estimated from the semireciprocal plot of the initial
velocity versus the concentration of the inhibitor accord-
ing to the method of Dixon.17 The correlation coeffi-
cients for the Dixon plots were above 0.990.
20
ꢀ
Acknowledgements
General procedure for conversion of 3 into 2-benzyl-3-
methanesulfinylpropanoic acid (4)
The authors express their thanks to the National Nat-
ural Science Foundation of China and Korean Science
and Engineering Foundation for the financial support
of this work.
Typically, lithium iodide (2.77 g, 20.6 mmol) was added
to a anhydrous ethyl acetate (75 mL) solution of
(2S,4R)-3 (920 mg, 3.75 mmol), and the resulting mix-
ture was heated under reflux for 8 h under N2. After
cooling to room temperature, the reaction mixture was
treated with water and the water layer was acidified to
pH 1.0 with an aqueous citric acid solution (10%), then
extracted with ethyl acetate (50 mLꢁ5). The combined
extract was washed with saturated Na2S2O3 solution (20
mL), dried over MgSO4, and evaporated under reduced
pressure to give a pale yellow oil which crystallized on
standing to obtain crystalline (2S,4R)-4, (394 mg, 47%).
References and Notes
1. Lipscomb, N. W.; Strater, N. Chem. Rev. 1996, 96, 2375.
2. (a) Kim, D. H.; Kim, K. B. J. Am. Chem. Soc. 1991, 113,
3200. (b) Kim, D. H.; Chung, S. J. Bioorg. Med. Chem. Lett.
1995, 5, 1667. (c) Lee, K. J.; Kim, D. H. Bioorg. Med. Chem.
Lett. 1996, 6, 2431. (d) Kim, K. J.; Joo, K.-J.; Lee, M.; Kim,
D. H. Bioorg. Med. Chem. 1997, 5, 1989. (e) Kim, D. H.; Lee,
K. J. Bioorg. Med. Chem. Lett. 1997, 7, 2607. (f) Lee, K. J.;
Kim, D. H. Bull. Korean Chem. Soc. 1997, 18, 1100. (g) Kim,
D. H.; Chung, S. J.; Kim, E.-J.; Tian, G. R. Bioorg. Med.
Chem. Lett. 1998, 8, 859. (h) Kim, D. H.; Jin, Y. Bioorg. Med.
Chem. Lett. 1999, 9, 691. (i) Lee, M.; Jin, Y.; Kim, D. H.
Bioorg. Med. Chem. 1999, 7, 1755. (j) Chung, S. J.; Kim, D. H.
Bioorg. Med. Chem. 2001, 9, 185.
3. Christianson, D. W.; Lipscomb, W. N. Acc. Chem. Res.
1989, 22, 62.
4. Mock, W. L.; Tsay, J.-T. Synth. Commun. 1988, 18, 769.
5. Kim, D. H.; Kim, Y. J. Bioorg. Med. Chem. Lett. 1993, 3,
2681.
6. Fisher, J. W.; Trinkle, K. L. Tetrahedron Lett. 1994, 35,
2505.
7. Tillett, J. G. Chem. Rev. 1976, 76, 747.
8. Crystallographic data (excluding structure factors) for the
structure have been deposited with the Cambridge Crystal-
lographic Data Center as supplementary publication nos.
CCDC 209253. Copies of the data can be obtained, free of
charge, on application to CCDC, 12 Union Road, Cam-
bridge, CB2 1EZ, UK (fax: +44-1223-336033 or e-mail:
deposit@ccdc.cam.ac.uk).
Mp122–124 ꢀC. IR (KBr, cmÀ1) 3429, 1718, 1016. H
1
NMR (300 MHz, CDCl3) d 9.22 (br, 1H), 7.33–7.18 (m,
5H), 3.33–3.29 (m, 1H), 3.20 (dd, J=5.6, 13.8 Hz, 1H),
3.03 (t, J=12.9 Hz, 1H), 2.93 (dd, J=8.3, 13.8 Hz, 1H),
2.74 (dd, J=2.4, 12.9 Hz, 1H), 2.55 (s, 3H). 13C NMR
(75 MHz, CDCl3) d 175.06, 138.96, 129.90, 129.24,
127.41, 55.90, 42.18, 39.53, 38.41. [a]2D0=À7.5 (c 0.1%,
CHCl3). Anal. calcd for C11H14O3S: C, 58.38; H, 6.24;
found: C, 58.20; H, 6.23. (2S,4S)-4: (48%). Mp109–
110 ꢀC. IR (KBr, cmÀ1) 3440, 2912,1722, 1007. 1H
NMR (300 MHz, CDCl3) d 10.68 (br, 1H), 7.30–7.19
(m, 5H), 3.29 (dd, J=6.2, 12.6 Hz, 1H), 3.22–3.12 (m,
2H), 3.03–2.99 (m, 1H), 2.74 (dd, J=5.1, 12.6 Hz, 1H),
2.60 (s, 3H). 13C NMR (75 MHz, CDCl3) d 175.12,
139.19, 129.84, 129.21, 127.34, 55.83, 42.13, 39.30,
37.56. [a]2D0=À6.5 (c 0.1%, CHCl3). Anal. calcd for
C11H14O3S: C, 58.38; H, 6.24; found: C, 58.30; H, 6.29.
20
ꢀ
(2R,4S)-4: (43%). Mp122–124 C. [a]D =+7.2 (c 0.1%,
CHCl3). Anal. calcd for C11H14O3S: C, 58.38; H, 6.24.
Found: C, 58.23; H, 6.31. (2R,4R)-4: (41%). Mp109–
110 ꢀC. [a]D20=+6.7 (c 0.1%, CHCl3). Anal. calcd for
C11H14O3S: C, 58.38; H, 6.24. Found: C, 58.16; H, 6.33.
9. Suh, J.; Kaiser, E. T. J. Am. Chem. Soc. 1976, 98, 1940.
10. Mock, W. L.; Zhang, J. Z. J. Biol. Chem. 1991, 266, 6903.
11. Mock, W. L.; Tsay, J.-Y. J. Am. Chem. Soc. 1989, 111,
4467.
12. Fabbrizzi, L.; Licchelli, M.; Rabaioli, G.; Taglietti, A.
Coor. Chem. Rev. 2000, 205, 85.
Determination of Ki value
13. (a) Christianson, D. W.; Lipscomb, W. N. Proc. Natl.
Acad. Sci. U.S.A. 1987, 84, 1512. (b) Christianson, D. W.;
Lipscomb, W. N. J. Am. Chem. Soc. 1988, 110, 5560.
14. Phillips, M. A.; Fletterick, R.; Rutter, W. J. J. Biol. Chem.
1990, 265, 20692.
15. Ondetti, M. A.; Condon, M. E.; Reid, J.; Sato, E. F.;
Cheung, H. S.; Cushman, D. W. Biochemistry 1979, 18, 1427.
16. McElvain, S. M.; Kent, R. E.; Stevens, C. L. J. Am. Chem.
Soc. 1946, 68, 1922.
The enzyme stock solution was added to a solution
containing Cl-CPL (final concentrations: 50 and 100
mM) and inhibitor (five different final concentrations in
the range of 0.5–2 Ki) in 0.05 M Tris/0.5 M NaCl, pH
7.5 buffer (1-mL cuvette), and the change in absorbance
at 320 nm was measured immediately. The final con-
centration of CPA was 18 nM. Initial velocities were
then calculated from the linear initial slopes of the
change in absorbance where the amount of substrate
17. Dixon, M. Biochem. J. 1953, 55, 170.