Y. Kobayashi et al. / Tetrahedron Letters 45 (2004) 677–680
679
ever, these methods would be a versatile synthetic tool
for other macrolactin analogues. The synthetic deriva-
tives in these studies will be used in order to establish
structure–activity relationship, in particular the effects
of the (2Z,4E)- and (8E,10Z)-moieties of macrolactin A,
and to design compounds with better biological prop-
erties.
OTBS
a
b, c
5 (fragment C)
TESO
OTBS
O
15
OTBS
OTBS
Acknowledgements
d, e
f-h
OTBS
This research was supported by grants from 21st Cen-
tury COE Program ꢁKnowledge Information Infra-
structure for Genome Scienceꢀ and the Japan Health
Sciences.
OTBS
O
O
HO
O
17
16
OTBS
O
OMe
References and notes
i-k
OTBS
CO2Et
CO2Et
OH
1. Gustafson, K.; Roman, M.; Fenical, W. J. Am. Chem. Soc.
1989, 111, 7519.
2. Rychonovskyk, S. D.; Skalitzky, D. J.; Pathirana, C.;
Jensen, P. R.; Fenical, W. J. Am. Chem. Soc. 1992, 114,
671.
3. (a) Smith, A. B., III; Ott, G. R. J. Am. Chem. Soc. 1996,
118, 13095; (b) Kim, Y.; Singer, R. A.; Carreira, E. M.
Angew. Chem., Int. Ed. 1998, 37, 1261; (c) Marino, J. P.;
McClure, M. S.; Holub, D. P.; Comasseto, J. V.; Tucc, F.
C. J. Am. Chem. Soc. 2002, 124, 1664.
O
O
O
O
19
1b
18
O
OMe
Hb
O
O
n
l, m
Hc
Ha
O
4. (a) Boyce, R. J.; Pattenden, G. Tetrahedron Lett. 1996, 37,
3501; (b) Donaldson, W. A.; Bell, P. T.; Wang, Z.;
Bennett, D. W. Tetrahedron Lett. 1994, 35, 5829; (c)
O
20
€
Barmann, H.; Prahlad, V.; Tao, C.; Yun, Y. K.; Wang, Z.;
Scheme 4. Reagents and conditions: (a) EtMgBr, 4 (fragment B),
THF, 70%; (b) dppb, toluene, THF; (c) AcOH/THF/H2O (8:8:1), 40%
(two steps); (d) Me4NBH(OAc)3, AcOH, MeCN, 89%; (e) 2,2-
dimethoxypropane, PPTS, CH2Cl2, 83%; (f) BrCN, n-BuLi, THF,
)78 ꢁC fi )40 ꢁC, 90%; (g) PdCl2(PPh3)2, Bu3SnH, benzene; (h) CuTC,
ethyl (Z)-3-iodopropenoate 3, NMP, 64% (two steps); (i) TBAF, THF,
0 ꢁC, 92%; (j) CH2@CMe(OMe), PPTS, CH2Cl2, )40 ꢁC, 82%; (k)
TBAF, AcOH (1:1), THF, 89%; (l) 3 N KOH, THF, EtOH, 60 ꢁC; (m)
2,4,6-trichlorobenzoyl chloride, Et3N, THF, then DMAP, toluene,
40% (three steps); (n) PPTS, MeOH, 61%.
Donaldson, W. A. Tetrahedron 2000, 56, 2283; (d)
Tanimori, S.; Morita, Y.; Tsubota, M.; Nakayama, M.
Synth. Commun. 1996, 26, 559.
ꢀ
5. (a) Hachem, A.; Flocꢀh, Y. L.; Gree, R.; Rolland, Y.;
Simonet, S.; Verbeuren, T. Tetrahedron Lett. 2002, 43,
ꢀ
5217; (b) Benvegnu, T. J.; Gree, R. Tetrahedron 1996, 52,
11821.
6. Ikeda, N.; Arai, I.; Yamamoto, H. J. Am. Chem. Soc.
1986, 108, 483.
7. Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.;
Inoue, T.; Hashimoto, K.; Fujita, E. J. Org. Chem. 1986,
51, 2391.
8. (a) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem.
1969, 34, 2543; (b) Ohtani, I.; Kusumi, T.; Kashman, Y.;
Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
9. First preparation of IBX: Hartman, C.; Meyer, V. Chem.
Ber. 1893, 26, 1727; For a superior route to IBX, see:
Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem.
1999, 64, 4537.
10. The absolute configuration of 9 and 12 was determined by
a modified method of the Mosher protocol.8
11. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22,
3815.
(2Z,4E)-carboxylic acid (JHa–Hb ¼ 11:3 Hz) by a modi-
fied Yamaguchiꢀs method20 did not provide the desired
(2Z,4E)-lactone at all, and gave unexpected (2E,4E)-
lactone 20 as the single isomer (JHa–Hb ¼ 15:3 Hz).21
From the fact that McClure and co-workers3c succeeded
in a total synthesis of macrolactin A by the same pro-
cedure, the replacement of the (8E,10Z)-dienic moiety to
the aromatic ring seems to prohibit the macrocyclization
into the (2Z,4E)-lactone. Finally, global deprotection of
the methoxyisopropylidene acetal and acetonide of 20
afforded the macrolactin A analogue 1b in 61% yield.
12. Schmidt, B.; Seebach, D. Angew. Chem., Int. Ed. Engl.
1991, 30, 99.
13. Hartman, C.; Seyferth, D.; Marmor, R. S.; Hilbert, P.
J. Org. Chem. 1971, 36, 1379; Brown, D. G.; Velthuisen,
E. J.; Commerford, J. R.; Brisbois, R. G.; Hoye, T. R.
J. Org. Chem. 1996, 61, 2540.
14. Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992, 114,
7933; Guo, C.; Lu, X. J. Chem. Soc., Perkin Trans. 2 1993,
1921.
The synthesis of 1b was thus completed in 23 steps in the
longest linear sequence. The use of 5 allowed rapid
access to advanced intermediate 16 through isomeriza-
tion of ynone to (E,E)-conjugated dienone. Overall,
control of all of the four stereocenters was achieved by
means of asymmetric and diastereoselective reactions
without using any chiral natural sources. Unfortunately,
the desired product 1a could not be synthesized. How-
15. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am.
Chem. Soc. 1998, 110, 3560.