10.1002/anie.202013570
Angewandte Chemie International Edition
RESEARCH ARTICLE
A. Idili, M. A. D. Nijenhuis, T. F. A. de Greef, F. Ricci, J. Am. Chem. Soc.
2018, 140, 14725-14734; e) Y. Biniuri, G.-F. Luo, M. Fadeev, V. Wulf, I.
Willner, J. Am. Chem. Soc. 2019, 141, 15567-15576; f) E. Del Grosso,
G. Ragazzon, L. J. Prins, F. Ricci, Angew. Chem., Int. Ed. 2019, 58,
5582-5586; g) L. Zhao, X. Qi, X. Yan, Y. Huang, X. Liang, L. Zhang, S.
Wang, W. Tan, J. Am. Chem. Soc. 2019, 141, 17493-17497; h) I. A. P.
Thompson, L. Zheng, M. Eisenstein, H. T. Soh, Nat. Commun. 2020, 11,
2946.
These results demonstrated that the selected “clipped aptamer”
not only has EpCAM binding ability, but also can regulate protein
function. Unlike the riboswitch regulation mechanism, which
follows the Central Dogma, the regulation mechanism of the
“clipped aptamer” is similar to that of natural allosteric enzymes
through the change of “structure-binding affinity-protein function”
pathway, avoiding excessive time consumption and potential
secondary effects of dynamic biological processes.
[7]
[8]
[9]
C. Dohno, I. Kohyama, C. Hong, K. Nakatani, Nucleic Acids Res. 2012,
40, 2771-2781.
C. Dohno, M. Kimura, K. Nakatani, Angew. Chem., Int. Ed. 2018, 57,
506-510.
Conclusion
P. A. Baeuerle, O. Gires, Br. J. Cancer 2007, 96, 1491-1491.
[10] Y. Song, Z. Zhu, Y. An, W. Zhang, H. Zhang, D. Liu, C. Yu, W. Duan, C.
J. Yang, Anal. Chem. 2013, 85, 4141-4149.
In conclusion, we have reported the concept of “clipped aptamer”
and its direct evolutionary process, which takes advantage of the
specific recognition between the DNA-mismatch-binding
molecular glue and the preset CGG/CGG sites of DNA sequences.
Z-NCTS can quickly “clip” together two CGG sites within the DNA
sequence, triggering the structural transition from the target
unbound state to the bound state with ideal thermodynamics. A
series of “clipped aptamers” against EpCAM were obtained, and
the “clip” mode of XMU3-bcd aptamer was investigated through
experiments and MDS, which indicated that Z-NCTS “clipped” the
b and c sites of the XMU3-bcd aptamer together with a 1:1
stoichiometry. Moreover, XMU3-bcd aptamer can directly
regulate the cell adhesion via the “structure-binding affinity-
protein function” pathway, rather than following the Central
Dogma. Therefore, this strategy not only adds an extra level of
molecular recognition for aptamers to enhance the structural
diversity and function of aptamers, but also holds great potential
in producing sensitive and selective outputs in response to
binding to a specific molecule, which is a significant capability for
biosensing, imaging, conditional gene- and cellular behavior-
regulatory, drug delivery, etc.
[11] a) M. Zuker, Nucleic Acids Res. 2003, 31, 3406-3415; b) S. Frees, C.
Menendez, M. Crum, P. S. Bagga, Hum. Genomics 2014, 8, 8.
Acknowledgements
We thank the National Natural Science Foundation of China
(22022409, 21735004, 21874089, 21705024, 21775128), and the
Program for Changjiang Scholars and Innovative Research Team
in University (IRT13036) for their financial support.
Keywords: aptamer • selection • regulation of binding affinity •
gain of function
[1]
a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew.
Chem., Int. Ed. 2002, 41, 2596-2599; b) C. R. Becer, R. Hoogenboom,
U. S. Schubert, Angew. Chem., Int. Ed. 2009, 48, 4900-4908.
a) M. D. Best, Biochemistry 2009, 48, 6571-6584; b) P. Thirumurugan,
D. Matosiuk, K. Jozwiak, Chem. Rev. 2013, 113, 4905-4979.
a) J. Gierlich, K. Gutsmiedl, P. M. E. Gramlich, A. Schmidt, G. A. Burley,
T. Carell, Chem. - Eur. J. 2007, 13, 9486-9494; b) J. Gierlich, G. A. Burley,
P. M. E. Gramlich, D. M. Hammond, T. Carell, Org. Lett. 2006, 8, 3639-
3642.
[2]
[3]
[4]
[5]
A. H. El-Sagheer, T. Brown, Chem. Soc. Rev. 2010, 39, 1388-1405.
a) M. Liu, Q. Yin, Y. Chang, Q. Zhang, J. D. Brennan, Y. Li, Angew.
Chem., Int. Ed. 2019, 58, 8013-8017; b) X. Fang, W. Tan, Acc. Chem.
Res. 2010, 43, 48-57.
[6]
a) B. Townshend, A. B. Kennedy, J. S. Xiang, C. D. Smolke, Nat.
Methods 2015, 12, 989-994; b) J. Canoura, Z. Wang, H. Yu, O. Alkhamis,
F. Fu, Y. Xiao, J. Am. Chem. Soc. 2018, 140, 9961-9971; c) L. Li, Y.
Jiang, C. Cui, Y. Yang, P. Zhang, K. Stewart, X. Pan, X. Li, L. Yang, L.
Qiu, W. Tan, J. Am. Chem. Soc. 2018, 140, 13335-13339; d) D. Mariottini,
7
This article is protected by copyright. All rights reserved.