Job/Unit: I30768
/KAP1
Date: 20-08-13 17:25:30
Pages: 6
SHORT COMMUNICATION
Eichhöfer, Z. Anorg. Allg. Chem. 2003, 629, 415–420; d) A.
Eichhöfer, D. Fenske, J. Olkowska-Oetzel, Z. Anorg. Allg.
Chem. 2004, 630, 247–251; e) R. Ahlrichs, N. R. M. Crawford,
A. Eichhöfer, D. Fenske, O. Hampe, M. M. Kappes, J. Olkow-
ska-Oetzel, Eur. J. Inorg. Chem. 2006, 345–350.
a) D. T. T. Tran, J. F. Corrigan, Organometallics 2000, 19,
5202–5208; b) A. Borecki, J. F. Corrigan, Inorg. Chem. 2007,
46, 2478–2484.
CCDC-756645 (for 1) and -756646 (for 2) contain the supplemen-
tary crystallographic data for this paper. These data can be ob-
tained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
Computational Details: The molecular structures of 1, 2, and hypo-
thetical adduct 3 were optimized at the B3LYP[22] level of density
functional theory without symmetry restrictions and were con-
firmed to be minima on the potential energy surface by frequency
analyses (no negative force constants). The calculations were per-
formed by using the Gaussian03 program package.[23] Basis sets
employed were 6-31G for hydrogen atoms; 6-311G(d) for carbon,
silicon, phosphorus, sulfur, copper, and selenium atoms; and the
LANL2DZ effective core potential basis set for indium atoms.[24]
[10]
[11]
Crystal data and structure refinement: 1 (C24H60CuInP2SSi):
STOE IPDS-2T diffractometer, Mm = 649.17 gmol–1, crystal
size 0.2ϫ0.2ϫ0.05 mm3, orthorhombic, space group Pna21
(No. 33),
a = 1699.64(4) pm, b = 1147.66(3) pm, c =
5260.2(2) pm, V = 10260.6(5)ϫ106 pm3, Z = 12, T = 180(2) K,
ρber = 1.261 gcm–3, μ = 1.495 mm–1, λ = 71.073 pm (Mo-Kα),
2θmax = 52°, 32786 measured, 15909 independent reflections,
Rint = 0.135, 13540 with IϾ2σ(I), 807 parameters, H atoms in
idealized positions, R1 (observed reflections) = 0.089, wR2 (all
data) = 0.247, Flack parameter x = 0.11(3), max./min. residual
electron density peaks 2.83/–1.45 e–/106 pm3. 2 (C24H60Cu-
Supporting Information (see footnote on the first page of this arti-
cle): Unit cell plot of 1; depiction of the molecular structure of 2;
1H NMR, 13C NMR, and 31P NMR spectra of solutions of 1 and
2.
InP2SeSi): STOE IPDS-2T diffractometer, Mm
=
696.07 gmol–1, crystal size 0.5ϫ0.4ϫ0.3 mm3, monoclinic,
space group Cc (No. 9), a = 1904.9(2) pm, b = 1174.40(6) pm,
c = 1740.2(1) pm, β = 118.880(6)°, V = 3409.0(4)ϫ106 pm3, Z
= 4, T = 180(2) K, ρber = 1.356 gcm–3, μ = 2.507 mm–1, λ =
71.073 pm (Mo-Kα), 2θmax = 50°, 9479 measured, 5460 inde-
pendent reflections, Rint = 0.102, 4758 with IϾ2σ(I), 284 pa-
rameters, H atoms in idealized positions, R1 (observed reflec-
tions) = 0.055, wR2 (all data) = 0.145, inversion twinning,
max./min. residual electron density peaks 1.82/–0.76 e–/
106 pm3.
Acknowledgments
Financial support by the University of Leipzig (PbF 1) and the
Graduate School BuildMoNa is gratefully acknowledged.
[1] a) G. E. Coates, J. Chem. Soc. 1951, 2003–2013; b) G. E.
Coates, R. A. Whitcombe, J. Chem. Soc. 1956, 3351–3354; c)
A. Haaland, Angew. Chem. 1989, 101, 1017–1032; Angew.
Chem. Int. Ed. Engl. 1989, 28, 992–1007.
[2] a) G. H. Robinson, H. Zhang, J. L. Atwood, Organometallics
1987, 6, 887–889; b) G. H. Robinson, S. A. Sangokoya, J. Am.
Chem. Soc. 1988, 110, 1494–1497; c) J. Blank, H.-D. Hausen,
W. Schwarz, J. Weidlein, J. Organomet. Chem. 1993, 443, 145–
151; d) H. Schumann, F. Girgsdies, S. Dechert, J. Gottfriedsen,
M. Hummert, S. Schutte, J. Pickardt, Z. Anorg. Allg. Chem.
2002, 628, 2625–2630.
[3] a) W. Uhl, R. Gerding, F. Hannemann, Z. Anorg. Allg. Chem.
1998, 624, 937–944; b) W. Uhl, M. Claesener, A. Hepp, Organo-
metallics 2008, 27, 2118–2122.
[4] a) J. A. Francis, S. G. Bott, A. R. Barron, Main Group Chem.
1999, 3, 53–57; b) C. Lustig, N. W. Mitzel, Organometallics
2002, 21, 3471–3476; c) T. Rüffer, C. Bruhn, E. Rusanov, K.
Nordhoff, D. Steinborn, Z. Anorg. Allg. Chem. 2002, 628, 421–
427.
[5] a) O. Kluge, S. Gerber, H. Krautscheid, Z. Anorg. Allg. Chem.
2011, 637, 1909–1921; b) Treatment of InMe3 with PhSeSiMe3
in MeCN results in the formation of TMS and (Me2InSePh)n.
However, no conclusion can be made by comparing the total
energies (obtained by DFT calculations) of the reactants, the
adduct, and the hypothetical products, as the reactants and the
products differ little in energy (In–C and Si–E bond versus In–
E and Si–C bond), and the sign depends on the computational
details (functional, basis sets) and corrections (ZPVE, BSSE).
Despite this, the adduct contains one additional bond (fourfold
coordinated In atom) and is therefore more stable than the
reactants and the products.
[12]
[13]
I. G. Dance, Polyhedron 1986, 5, 1037–1104.
O. Kluge, K. Grummt, R. Biedermann, H. Krautscheid, Inorg.
Chem. 2011, 50, 4742–4752.
[14]
[15]
P. G. Eller, G. J. Kubas, J. Am. Chem. Soc. 1977, 99, 4346–4351.
The relatively large overestimation (ca. 10 pm) of the In–E
bond lengths is presumably due to a combination of dispersion
interactions usually neglected by DFT and a bond shortening
in the solid state, caused by the polar environment. For the
latter, see: M. Bühl, T. Steinke, P. v. R. Schleyer, R. Boese, An-
gew. Chem. 1991, 103, 1179–1181; Angew. Chem. Int. Ed. Engl.
1991, 30, 1160.
S. Berger, S. Braun, H.-O. Kalinowski, NMR-Spektroskopie von
Nichtmetallen, vol. 3, 31P-NMR-Spektroskopie, Thieme, Stutt-
gart, Germany, 1993, p. 88; U. Siegert, H. Hahn, H. Lang,
Inorg. Chim. Acta 2010, 363, 944–948.
V. V. Shatunov, A. A. Korlyukov, A. V. Lebedev, V. D. Shelud-
yakov, B. I. Kozyrkin, V. Yu. Orlov, J. Organomet. Chem. 2011,
696, 2238–2251.
D. A. Edwards, R. Richards, J. Chem. Soc., Dalton Trans. 1973,
2463.
[16]
[17]
[18]
[19]
[20]
G. Brauer (Ed.), Handbuch der Präparativen Anorganischen
Chemie, Enke Verlag, Stuttgart, 1978, p. 864f.
A. Altomare, G. Cascarano, C. Giacovazzo, A. Gualardi, J.
Appl. Crystallogr. 1993, 26, 343.
[21]
[22]
G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112.
a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. Lee, W.
Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785; c) S. J. Vosko, L.
Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
[23]
[6] J. L. Atwood, S. K. Seale, J. Organomet. Chem. 1976, 114, 107–
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morok-
uma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzew-
ski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
118.
[7] a) O. Kluge, H. Krautscheid, Inorg. Chem. 2012, 51, 6655–
6666; b) O. Kluge, D. Friedrich, G. Wagner, H. Krautscheid,
Dalton Trans. 2012, 41, 8635–8642.
[8] a) S. Dehnen, A. Eichhöfer, D. Fenske, Eur. J. Inorg. Chem.
2002, 279–317; b) M. W. DeGroot, J. F. Corrigan, Z. Anorg.
Allg. Chem. 2006, 632, 19–29.
[9] a) A. Eichhöfer, D. Fenske, J. Chem. Soc., Dalton Trans. 2000,
941–944; b) D. T. T. Tran, L. M. C. Beltran, C. M. Kowalchuk,
N. R. Trefiak, N. J. Taylor, J. F. Corrigan, Inorg. Chem. 2002,
41, 5693–5698; c) J. Olkowska-Oetzel, D. Fenske, P. Scheer, A.
Eur. J. Inorg. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim