10.1002/cctc.201900965
ChemCatChem
COMMUNICATION
1836; d) V. P. Boyarskiy, N. A. Bokach, K. V. Luzyanin and V. Y.
Kukushkin, Chem. Rev. 2015, 115, 2698; e) B. Zhang and A. Studer,
Chem. Soc. Rev. 2015, 44, 3505; f) B. Song and B. Xu, Chem. Soc.
Rev. 2017, 46, 1103.
an improved and regioselective cyclization of isocyanides with
acyl chlorides has been realized using a silver-based MOF
catalyst. The strategy features a broad substrate scope, good
functional group compatibility, and allows catalyst recycling.
Considering the practicality and scalability of the process, the
methodology described herein undoubtedly will find wide
applications in future synthetic endeavors.
[2]
[3]
Isocyanide Chemistry (Eds: V. G. Nenajdenko), Wiley-VCH, Weinheim,
2012.
S. Chakrabarty, S. Choudhary, A. Doshi, F.-Q. Liu, R. Mohan, M. P.
Ravindra, D. Shah, X. Yang, F. F. Fleming, Adv. Synth. Catal. 2014,
356, 2135.
[4]
[5]
Y. Wang, R. K. Kumar, X. Bi, Tetrahedron Lett. 2016, 57, 5730.
a) M. Suzuki, T. Iwasaki, M. Miyoshi, K. Okumura, K. Matsumoto, J.
Org. Chem. 1973, 38, 3571; b) S. Maeda, M. Suzuki, T. Iwasaki, K.
Matsumoto, Y. Iwasawa, Chem. Pharm. Bull. 1984, 32, 2536; c) W. L. F.
Armarego, H. Taguchi, R. G. H. Cotton, S. Battiston, L. Leong, Eur. J.
Med. Chem. 1987, 22, 283; d) J. Tang, J. G. Verkade, J. Org. Chem.
1994, 59, 7793; e) M. Baumann, I. R. Baxendale, S. V. Ley, C. D. Smith,
G. K. Tranmer, Org. Lett. 2006, 8, 5231; f) W.-S. Huang, Y.-X. Zhang,
C.-Y. Yuan, Syn. Commun. 1996, 26, 1149; g) W.-S. Tian, T.
Livinghouse, J. Chem. Soc., Chem. Commun. 1989, 13, 819.
a) U. Schöllkopf, R. Schröder, Angew. Chem. 1971, 83, 358; Angew.
Chem., Int. Ed. 1971, 10, 333; b) U. Schöllkopf, P.-H. Porsch, Chem.
Ber. 1973, 106, 3382; c) R. Schröder, U. Schöllkopf, E. Blume, I. Hoppe,
Justus Liebigs Ann. Chem. 1975, 533; d) J. Rachoń, U. Schöllkopf,
Justus Liebigs Ann. Chem. 1981, 1186.
Experimental Section
Preparation of AgMOFs: MIL-101 was synthesized according to a
reported procedure.[16] Subsequently, the activated MIL-101 powder (100
mg) was immersed in acetonitrile (8 mL) containing various amounts of
silver nitrate (20 mg, 40 mg, 60 mg and 80 mg for preparation of AgMOF-
1, AgMOF-2, AgMOF-3, and AgMOF-4, respectively). The mixture was
stirred for 24 hours at room temperature. After the impregnation, the
suspension was centrifuged to separate the solid and washed with
CH3CN. The as-synthesized sample was further dried at 150 °C for 8 h,
followed by treatment with a H2/Ar stream (50 ml⋅min–1/50 ml⋅min–1) at
200 °C for 3 h to yield the desired AgMOF. Finally, the sample was kept
under an Ar atmosphere for further use.
[6]
[7]
[8]
J. U. Nef, Justus Liebigs Ann. Chem. 1892, 270, 267.
Typical procedure for synthesis of 3 (with 3a as an example): To a
mixture of 1a (58 μL, 0.5 mmol) and 2a (67 μL, 0.6 mmol) in 1,4-dioxane
(2.0 mL) was added AgMOF-3 (100 mg, 3.7 mol% Ag). The reaction
mixture was stirred at 80 °C under an Ar atmosphere until substrate 1a
was consumed as indicated by TLC (about 3 h). The resulting mixture
was concentrated under reduced pressure and the residue was taken up
in CH2Cl2. The combined organic layers were washed with brine, dried
over MgSO4 and concentrated under reduced pressure. Purification of
the crude product by column chromatography (silica gel; petroleum
ether/ethyl acetate 5:1) afforded compound 3a in 83% yield as a yellow
solid. m.p. 54–55 °C; 1H NMR (400 MHz, CDCl3): δ 7.76 (t, J = 5.2 Hz,
2H), 7.53 (s, 1H), 7.45–7.39 (m, 3H), 4.50 (q, J = 7.2 Hz, 2H), 1.46 (t, J =
7.2 Hz, 3H); 13C NMR (CDCl3, 101 MHz): δ 155.7, 154.3, 151.6, 129.8,
129.0, 126.6, 125.1, 123.8, 62.6, 14.2; HRMS (ESI-TOF) m/z calculated
for C12H12NO3 [M+H]+: 218.0817, found: 218.0816.
A. Dos Santos, L. El Kaïm, L. Grimaud, C. Ronsseray, Chem. Commun.
2009, 3907.
[9]
a) R. V. Jagadeesh, K. Murugesan, A. S. Alshammari, H. Neumann,
M.-M. Pohl, J. Radnik, M. Beller, Science. 2017, 358, 326; b) K. Natte,
H. Neumann, R. V. Jagadeesh, M. Beller, Nature Commun. 2017, 8,
1344; c) R. V. Jagadeesh, H. Junge, M. Beller, Nature Commun. 2014,
5, 4123; d) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi,
Science 2013, 341, 1230444.
[10] a) R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J.
Rabeah, H. Huan, V. Schünemann, A. Brückner, M. Beller, Science.
2013, 342, 1073; b) X.-H. Liu, J.-G. Ma, Z. Niu, G.-M. Yang, P. Cheng,
Angew. Chem. 2015, 127, 1002; Angew. Chem. Int. Ed. 2015, 54, 988.
[11] M. Krasavin, M. Korsakov, M. Dorogov, T. Tuccinardi, N. Dedeoglu and
C. T. Supuran, Eur. J. Med. Chem. 2015, 101, 334.
[12] T. J. Montavon, J. Li, J. R. Cabrera-Pardo, M. Mrksich, S. A. Kozmin,
Nat. Chem. 2012, 4, 45.
[13] a) M. Westling, R. Smith, T. Livinghouse, J. Org. Chem. 1986, 51, 1159;
b) S. Tong, Q. Wang, M.-X. Wang, J. Zhu, Angew. Chem. 2015, 127,
1309; Angew. Chem. Int. Ed. 2015, 54, 1293; c) J. Liu, Z. Liu, P. Liao, L.
Zhang, T. Tu, X. Bi, Angew. Chem. 2015, 127, 10764; Angew. Chem.
Int. Ed. 2015, 54, 10618; d) Z. Hu, J. Dong, X. Xu, Adv. Synth. Catal.
2017, 359, 3585; e) J.-Q. Liu, X. Shen, Y. Wang, X.-S. Wang, X. Bi,
Org. Lett. 2018, 20, 6930; f) J.-Q. Liu, X. Chen, X. Shen, Y. Wang, X.-S.
Wang, X. Bi, Adv. Synth. Catal. 2019, 361, 1543; g) J.-Q. Liu, X. Chen,
A. Shatskiy, M. D. Kärkäs, X.-S. Wang, J. Org. Chem. DOI:
10.1021/acs.joc.9b00528.
Acknowledgements
This work was supported by NSFC of China (No. 21702078),
NSF of Jiangsu Province (No. BK20170231, BK20170968),
Natural Science Foundation of Jiangsu Higher Education
Institution (17KJA150003), the open project of Jilin Province Key
Laboratory of Organic Functional Molecular Design & Synthesis
(130028830) and KTH Royal Institute of Technology. The
Wenner-Gren Foundations and the Olle Engkvist Byggmästare
Foundation are kindly acknowledged for postdoctoral fellowships
to J.L. and A.S., respectively.
[14] a) J. Daru, Z. Benda, Á. Póti, Z. Novák and A. Stirling, Chem. Eur. J.
2014, 20, 15395; b) Z. Hu, J. Dong, Y. Men, Z. Lin, J. Cai, X. Xu,
Angew. Chem. 2016, 128, 7193; Angew. Chem., Int. Ed. 2016, 55,
7077; c) Z. Hu, J. Dong, Y. Men, Z. Lin, J. Cai, X. Xu, Angew. Chem.
2017, 129, 1381; Angew. Chem. Int. Ed. 2017, 56, 1805.
Keywords: acyl chlorides • cycloaddition • isocyanides
oxazoles • silver
•
[15] The presence of HCl can prevent the isocyanide to react completely
with the acyl chloride. However, the presence of HCl α-keto imidoyl
halides presumably proceed to form nitrilium intermediates.
[16] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S.
Surblé, I. Margiolaki, Science 2005, 309, 2040.
[1]
a) S. Lang, Chem. Soc. Rev. 2013, 42, 4867; b) G. Qiu, Q. Ding and J.
Wu, Chem. Soc. Rev. 2013, 42, 5257; c) U. K. Sharma, N. Sharma, D.
D. Vachhani and E. V. Van der Eycken, Chem. Soc. Rev. 2015, 44,
This article is protected by copyright. All rights reserved.