422
S. P. Chavan, C. Praveen / Tetrahedron Letters 45 (2004) 421–423
HO
O
O
O
O
OH
HO
MsO
BnO
N3
a)
b)
c)
d)
ref 6
OH
O
O
O
BnO
h)
BnO
OEt
BnO
BnO
7
8
9
10
11
5
6
e)
O
O
HO
HO
O
g)
f)
HO
C
11H23
HO
BnO
C11H23
SO2Ph
CbzHN
BnO
O
N
H
8
BnO
NHCbz
NHCbz
Deoxoprosophylline (2)
13
12
Scheme 2. Reagents and conditions: (a) CH3C(OEt)3, cat. propionic acid, 140 °C, 2 h, 94%; (b) AD-mix-a, CH3SO2NH2, t-BuOH:H2O (1:1), 24 h,
0 °C, 95%, 93% ee; (c) CH3SO2Cl, Et3N, DCM, 92%; (d) NaN3, DMF, 90 °C, 89%; (e) i. TPP, H2O, C6H6, 8 h, ii. CbzCl, Et3N, cat. DMAP, DCM,
75% for two steps; (f) C12H25SO2Ph, n-BuLi, THF, )78 °C, 2 h, 94%; (g) 6% Na–Hg, Na2HPO4, CH3OH, )10 °C, 95%; (h) 20% Pd(OH)2/C, H2,
CH3OH, rt, 24 h, 76%.
2. (a) Ratle, G.; Monsieur, X.; Das, B.; Yassi, J.; Khuong-
Huu, Q.; Goutrarel, R. Bull. Soc. Chim. Fr. 1996, 2945–
2947; (b) Khuong-Huu, Q.; Rutle, G.; Monseux, X.;
Goutrarel, R. Bull. Soc. Chim. Belg. 1972, 81, 425–
458.
reduced tothe amine by using triphenylphosphine and
water and the resulting amine was protected as its Cbz
derivative by using CbzCl, TEA in the presence of a
catalytic amount of DMAP.
3. Kolter, T.; Sandhoff, K. Angew. Chem., Int. Ed. 1999, 38,
1532–1568.
4. Fodor, G. B.; Colasanti, B. In Alkaloids: Chemical and
Biological Perspective; Pelletier, S.W., Ed.; Wiley: New
York, 1985; Vol. 3, p 1.
Opening of the lactone of 11 was achieved using
C12H25SO2Ph and n-BuLi.9;10 Desulfonylation of 12
using 6% Na–Hg and Na2HPO4 at )10 °C gave the
ketone 13.11 Removal of the protecting groups and cy-
clization of the ketone 13 using catalytic Pd(OH)2 and
H2 in a one pot reaction, afforded (+)-deoxoproso-
phylline 2 in 76% yield. Having accomplished the synthesis
of natural 2, we turned our attention towards the syn-
thesis of its enantiomer. Accordingly, c,d-unsaturated
ester 7 was transformed in a similar fashion to afford
())-deoxoprosophylline 4 following a similar sequence
however, using AD-mix-b. The physical and spectro-
scopic data of our synthetic materials 212 and 4 were in
good agreement with those described in the literature.5d;e
5. (a) Saitoh, Y.; Moriyama, Y.; Hirota, H.; Takahashi, T.;
Khuong-Huu, Q. Bull. Chem. Soc. Jpn. 1981, 54, 488; (b)
Saitoh, Y.; Moriyama, Y.; Hirota, H.; Takahashi, T.;
Khuong-Huu, Q. Tetrahedron Lett. 1980, 21, 75; (c)
Kadota, I.; Kawada, M.; Muramatsu, Y.; Yamamoto, Y.
Tetrahedron: Asymmetry 1997, 8, 3887; (d) Takao, K.;
Nigawara, E.; Nishino, I.; Takagi, K.; Maeda, K.;
Tadano, K.; Ogawa Tetrahedron 1994, 50, 5681; (e)
Herdeis, C.; Telser, J. Eur. J. Org. Chem. 1999, 1407;
(f) Jourdant, A.; Zhu, J. Tetrahedron Lett. 2001, 42, 3431;
(g) Dransfield, P. J.; Gore, P. M.; Shipman, M.; Slawin, A.
M. Z. Chem. Commn. 2002, 150; (h) Datta, A.; Raviku-
mar, J. S.; Roy, S. Tetrahedron 2001, 57, 1169–1173; (i)
Ma, N.; Ma, D. Tetrahedron: Asymmetry 2003, 14, 1403–
1406.
6. Ramarao, A. V.; Bose, D. S.; Gurjar, M. K.; Ravindra-
nathan, T. Tetrahedron 1989, 45, 7031.
7. Trust, R.; Ireland, R. E. Org. Synth. (Coll. Vol.) 1998, 6,
606.
8. (a) Becker, H.; Sharpless, K. B. Angew. Chem., Int. Ed.
Engl. 1996, 35, 448–481; (b) Torri, S.; Liu, P.; Bhuvanes-
wari, N.; Amatore, C.; Jutand, A. J. Org. Chem. 1996, 61,
3055–3060; (c) For a review on asymmetric dihydroxyla-
tion, see: Kolb, H. C.; Van Niewenhze, M. S.; Sharpless,
K. B. Chem. Rev. 1994, 94, 2483–2547; (d) The ee of the
compound 8 was determined tobe 93% by Chiral HPLC
analysis (Chiralcel OD, 80:20 hexane/i-PrOH, 1 mL/min,
254 nm).
In summary, (+)- and ())-deoxoprosophylline were
synthesized in efficient yields from readily available cis-
2-butene-1,4-diol. The present synthesis of (+)- and ())-
deoxoprosophylline having an overall yield of 37% in
eight steps starting from the known allyl alcohol 6 is
better than earlier reported syntheses. By using Sharp-
less asymmetric dihydroxylation as the key step, we have
demonstrated that both enantiomers of deoxoprosophyl-
line can be readily accessed.
Acknowledgements
C.P. thanks CSIR (New Delhi) for a research fellowship.
Funding from YSA (CSIR, New Delhi) to S.P.C. is
gratefully acknowledged.
9. (a) Meck, J. S.; Fowler, J. S. J. Org. Chem. 1968, 33, 3422;
(b) Basinski, K.; Zurawinski, R.; Drabowicz, J.; Kolajcz-
ylo, M. M. Tetrahedron 1988, 44, 6687.
10. (a) Brimble, M. A.; Rush, C. J.; Williams, G. M.; Baker,
E. N. J. Chem. Soc., Perkin. Trans. 1 1990, 414; (b)
Brimble, M. A.; Officer, D. L.; Williams, G. M. Tetrahe-
dron Lett. 1988, 29, 3609.
References and Notes
11. Trost, B. M.; Arndt, H. C.; Strege, P. E.; Verhoeven, T. R.
Tetrahedron Lett. 1976, 17, 3477.
1. Schneider, M. J. Pyridine and Piperidine Alkaloids: An
Update. In Alkaloids: Chemical and Biological Perspec-
tives; Pelletier, S. W., Ed.; Pergamon: Oxford, 1996; Vol.
10, pp 155–299.
12. Selected physical and spectroscopic data for 2: mp 85–86 °C,
24
½a +13.5 (c 0.3, CHCl3). 1H NMR (200 MHz, CDCl3)
D
d, ppm: 0.88 (3H, t, J ¼ 6:5 Hz), 1.26 (24H, m), 1.72–1.79