A R T I C L E S
Leung et al.
reactions with alkenes and imido insertion into C-H bonds,
which could provide valuable insight into the mechanism of
metal-catalyzed aziridination/amidation reactions.
limiting formation of carboradical intermediates in the imido
transfer reactions.30b
To gain further insight into the mechanism of alkene
aziridination and C-H bond amidation, it would be of interest
to examine the effect of reduction potentials of metal imido
complexes and C-H bond dissociation energies (BDEs) of
hydrocarbons on the reaction rate constants. Such driVing force
dependence of rate constants, to our knowledge, has not hitherto
been reported in metal imido chemistry, nor haVe electrochemi-
cal studies on reactiVe M)NSO2R complexes been reported in
the literature. In metal oxo chemistry, Bruice,35a Che,35b and
co-workers examined the effect of reduction potentials of metal
oxo complexes on the rate constants of alkene epoxidation
reactions; Mayer and co-worker demonstrated the importance
of BDE to the reaction rate constants of C-H bond oxidations.36
In view of the analogy between oxo and imido groups, an
important issue to be addressed is whether the results obtained
for metal oxo complexes can be extended to metal imido
complexes.
On the other hand, imido groups have tunable steric hindrance
and can be much bulkier than oxo groups, rendering C-H bond
amidation by metal imido complexes to encounter larger steric
hindrance than C-H bond oxidation by metal oxo complexes.
Consequently, by replacing an oxo group with an imido group,
it may be possible to reverse the thermodynamic reactivity order
3° > 2° > 1° C-H bonds without the need of altering the steric
hindrance of auxiliary ligands. This unique approach to reversal
of the relative reactivity of 3° versus 2° versus 1° C-H bonds
has rarely been investigated.30b
While a variety of iron,1,2,12,22 manganese,1,2,6,12 cop-
per,3,4,7-9,11,13-17,20,23-26 ruthenium,10a-g,j,k dirhodium,5,10h,i,18,19
and silver21 complexes have been demonstrated to be efficient
catalysts for reactions 1 and/or 2, isolation or spectroscopic
identification of putative M)NSO2R species remains a serious
challenge. In fact, well characterized M)NSO2R complexes are
sparse, including [MoVIOn(NTs)2-n(Et2dtc)2] (n ) 0, 1),27,28a,b
[Tp′(CO)2W(NTs)][I3],28c,29 [RuVI(Por)(NTs)2],10f,30 and [OsVI-
(Por)(NTs)2],31 of which only [RuVI(Por)(NTs)2] can undergo
alkene aziridination and C-H bond amidation.10f,30
Imido transfer reactions with alkenes have also been known
for a few other types of metal imido complexes, including
[OsVIIIO4-n(NBut)n] (n ) 1-3)32 and [OsVIIIO3(NR)]32c for
oxyamination or diamination of alkenes, [MnV(TMP)(NCOCF3)-
(OOCCF3)] for aziridination of cyclooctene,28d,33 and [(dtbpe)-
NidN(2,6-Pri2C6H3)] for aziridination of ethylene.28e,34
Direct mechanistic studies on alkene aziridination and C-H
bond amidation reactions of reactive metal imido complexes
are rare. In a previous work,30b the reactions of [RuVI(TPP)-
(NTs)2] 28f with styrenes, norbornene, cyclohexene, cyclooctene,
ethylbenzenes, and cumene were examined through kinetic
studies. The observed effect of 1e oxidation potential of alkenes
and the effect of para-substituents of styrenes or ethylbenzenes
on rate constants, along with kinetic isotope effect, support rate-
(9) (a) D´ıaz-Requejo, M. M.; Pe´rez, P. J.; Brookhart, M.; Templeton, J. L.
Organometallics 1997, 16, 4399. (b) D´ıaz-Requejo, M. M.; Belderra´ın, T.
R.; Nicasio, M. C.; Trofimenko, S.; Pe´rez, P. J. J. Am. Chem. Soc. 2003,
125, 12078. (c) Mairena, M. A.; D´ıaz-Requejo, M. M.; Belderra´ın, T. R.;
Nicasio, M. C.; Trofimenko, S.; Pe´rez, P. J. Organometallics 2004, 23,
253.
(10) (a) Lai, T.-S.; Kwong, H.-L.; Che, C.-M.; Peng, S.-M. Chem. Commun.
1997, 2373. (b) Au, S.-M.; Zhang, S.-B.; Fung, W.-H.; Yu, W.-Y.; Che,
C.-M.; Cheung, K.-K. Chem. Commun. 1998, 2677. (c) Zhou, X.-G.; Yu,
X.-Q.; Huang, J.-S.; Che, C.-M. Chem. Commun. 1999, 2377. (d) Yu, X.-
Q.; Huang, J.-S.; Zhou, X.-G.; Che, C.-M. Org. Lett. 2000, 2, 2233. (e)
Au, S.-M.; Huang, J.-S.; Che, C.-M.; Yu, W.-Y. J. Org. Chem. 2000, 65,
7858. (f) Liang, J.-L.; Huang, J.-S.; Yu, X.-Q.; Zhu, N.; Che, C.-M. Chem.s
Eur. J. 2002, 8, 1563. (g) Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Yu, W.-
Y.; Che, C.-M. Angew. Chem., Int. Ed. 2002, 41, 3465. (h) Liang, J.-L.;
Yuan, S.-X.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2002, 4, 4507. (i)
Liang, J.-L.; Yuan, S.-X.; Chan, P. W. H.; Che, C.-M. Tetrahedron Lett.
2003, 44, 5917. (j) Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Che, C.-M. J.
Org. Chem. 2004, 69, 3610. (k) He, L.; Chan, P. W. H.; Tsui, W.-M.; Yu,
W.-Y.; Che, C.-M. Org. Lett. 2004, 6, 2405.
(11) (a) Dauban, P.; Dodd, R. H. Tetrahedron Lett. 1998, 39, 5739. (b) Dauban,
P.; Dodd, R. H. J. Org. Chem. 1999, 64, 5304. (c) Dauban, P.; Dodd, R.
H. Org. Lett. 2000, 2, 2327. (d) Dauban, P.; Sanie`re, L.; Tarrade, A.; Dodd,
R. H. J. Am. Chem. Soc. 2001, 123, 7707. (e) Duran, F.; Leman, L.; Ghini,
A.; Burton, G.; Dauban, P.; Dodd, R. H. Org. Lett. 2002, 4, 2481. (f)
Dauban, P.; Dodd, R. H. Synlett 2003, 1571. (g) Sanie`re, L.; Leman, L.;
Bourguignon, J.-J.; Dauban, P.; Dodd, R. H. Tetrahedron 2004, 60, 5889.
(12) Simonato, J.-P.; Pe´caut, J.; Scheidt, W. R.; Marchon, J.-C. Chem. Commun.
1999, 989.
(13) (a) Halfen, J. A.; Hallman, J. K.; Schultz, J. A.; Emerson, J. P.
Organometallics 1999, 18, 5435. (b) Halfen, J. A.; Uhan, J. M.; Fox, D.
C.; Mehn, M. P.; Que, L., Jr. Inorg. Chem. 2000, 39, 4913. (c) Halfen, J.
A.; Fox, D. C.; Mehn, M. P.; Que, L., Jr. Inorg. Chem. 2001, 40, 5060.
(14) Adam, W.; Roschmann, K. J.; Saha-Mo¨ller, C. R. Eur. J. Org. Chem. 2000,
557.
(19) (a) Padwa, A.; Stengel, T. Org. Lett. 2002, 4, 2137. (b) Padwa, A.; Flick,
A. C.; Leverett, C. A.; Stengel, T. J. Org. Chem. 2004, 69, 6377.
(20) Comba, P.; Merz, M.; Pritzkow, H. Eur. J. Inorg. Chem. 2003, 1711.
(21) (a) Cui, Y.; He, C. J. Am. Chem. Soc. 2003, 125, 16202. (b) Cui, Y.; He,
C. Angew. Chem., Int. Ed. 2004, 43, 4210.
(22) Avenier, F.; Latour, J.-M. Chem. Commun. 2004, 1544.
(23) Xu, J.; Ma, L.; Jiao, P. Chem. Commun. 2004, 1616.
(24) Leca, D.; Toussaint, A.; Mareau, C.; Fensterbank, L.; Lacoˆte, E.; Malacria,
M. Org. Lett. 2004, 6, 3573.
(25) Han, H.; Bae, I.; Yoo, E. J.; Lee, J.; Do, Y.; Chang, S. Org. Lett. 2004, 6,
4109.
(26) Amisial, L. D.; Dai, X.; Kinney, R. A.; Krishnaswamy, A.; Warren, T. H.
Inorg. Chem. 2004, 43, 6537.
(27) Harlan, E. W.; Holm, R. H. J. Am. Chem. Soc. 1990, 112, 186.
(28) Abbreviations: (a) Ts ) p-toluenesulfonyl; (b) Et2dtc ) N,N-diethyldithio-
carbamate; (c) Tp′ ) hydridotris(3,5-dimethyl-1-pyrazolyl)borate; (d) TMP
) 5,10,15,20-tetramesitylporphyrinato(2-); (e) dtbpe ) 1,2-bis(di-tert-
butylphosphino)ethane; (f) TPP ) 5,10,15,20-tetraphenylporphyrinato-
(2-); (g) Ms ) p-methoxybenzenesulfonyl; (h) Bs ) benzenesulfonyl; (i)
Cs ) p-chlorobenzenesulfonyl; (j) Ns ) p-nitrobenzenesulfonyl; (k) 2,6-
Cl2TPP ) 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrinato(2-); (l) F20-
TPP ) 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-); (m) TTP
) 5,10,15,20-tetrakis(p-tolyl)porphyrinato(2-); (n) 4-Cl-TPP ) 5,10,15,-
20-tetrakis(p-chlorophenyl)porphyrinato(2-); (o) 4-OMe-TPP ) 5,10,15,-
20-tetrakis(p-methoxyphenyl)porphyrinato(2-); (p) OEP ) 2,3,7,8,12,13,-
17,18-octaethylporphyrinato(2-); (q) Por* ) 5,10,15,20-tetrakis{(1S,4R,5R,
8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl}por-
phyrinato(2-).
(29) Pe´rez, P. J.; White, P. S.; Brookhart, M.; Templeton, J. L. Inorg. Chem.
1994, 33, 6050.
(30) (a) Au, S.-M.; Fung, W.-H.; Cheng, M.-C.; Che, C.-M.; Peng, S.-M. Chem.
Commun. 1997, 1655. (b) Au, S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-
H.; Che, C.-M. J. Am. Chem. Soc. 1999, 121, 9120.
(15) Llewellyn, D. B.; Adamson, D.; Arndtsen, B. A. Org. Lett. 2000, 2, 4165.
(16) (a) Sanders, C. J.; Gillespie, K. M.; Bell, D.; Scott, P. J. Am. Chem. Soc.
2000, 122, 7132. (b) Gillespie, K. M.; Crust, E. J.; Deeth, R. J.; Scott, P.
Chem. Commun. 2001, 785. (c) Gillespie, K. M.; Sanders, C. J.;
O’Shaughnessy, P.; Westmoreland, I.; Thickitt, C. P.; Scott, P. J. Org.
Chem. 2002, 67, 3450.
(17) Taylor, S.; Gullick, J.; McMorn, P.; Bethell, D.; Page, P. C. B.; Hancock,
F. E.; King, F.; Hutchings, G. J. J. Chem. Soc., Perkin Trans. 2 2001,
1714.
(31) Au, S.-M.; Fung, W.-H.; Huang, J.-S.; Cheung, K.-K.; Che, C.-M. Inorg.
Chem. 1998, 37, 6564.
(32) Selected examples: (a) Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.;
Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305. (b) Chong, A. O.; Oshima,
K.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 3420. (c) Patrick, D. W.;
Truesdale, L. K.; Biller, S. A.; Sharpless, K. B. J. Org. Chem. 1978, 43,
2628. (d) Mun˜iz, K.; Nieger, M.; Mansikkama¨ki, H. Angew. Chem., Int.
Ed. 2003, 42, 5958.
(18) (a) Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc.
2001, 123, 6935. (b) Guthikonda, K.; Du Bois, J. J. Am. Chem. Soc. 2002,
124, 13672. (c) Wehn, P. M.; Lee, J.; Du Bois, J. Org. Lett. 2003, 5, 4823.
(d) Fiori, K. W.; Fleming, J. J.; Du Bois, J. Angew. Chem., Int. Ed. 2004,
43, 4349. (e) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am.
Chem. Soc. 2004, 126, 15378.
(33) Groves, J. T.; Takahashi, T. J. Am. Chem. Soc. 1983, 105, 2073.
(34) Waterman, R.; Hillhouse, G. L. J. Am. Chem. Soc. 2003, 125, 13350.
(35) (a) Garrison, J. M.; Ostovic´, D.; Bruice, T. C. J. Am. Chem. Soc. 1989,
111, 4960. (b) Che, C.-M.; Li, C.-K.; Tang, W.-T.; Yu, W.-Y. J. Chem.
Soc., Dalton Trans. 1992, 3153.
(36) Bryant, J. R.; Mayer, J. M. J. Am. Chem. Soc. 2003, 125, 10351.
9
16630 J. AM. CHEM. SOC. VOL. 127, NO. 47, 2005