DNA Binding Studies of a Chromium(III) Complex Containing a Tridentate Ligand
FULL PAPER
[17]
D. S. Sigman, Acc. Chem. Res. 1986, 19, 180Ϫ186.
A. M. Pyle, J. K. Barton, Prog. Inorg. Chem. 1990, 38,
413Ϫ475.
The DNA concentration was kept constant (150 µ) and that of
the metal complex was varied from 5 to 75 µ. The flow time was
measured with a stop-watch operated manually, and each sample
was measured five times and an average flow time calculated. Data
are presented as (η/ηo)1/3 versus [Cr]/[DNA], where η is the vis-
cosity of DNA in the presence of complex, and ηo is the viscosity
of DNA alone. Viscosity values were calculated from the observed
flow time of DNA-containing solutions corrected for the flow time
of buffer alone (to), η ϭ t Ϫ to.[60]
[18]
[19]
[20]
[21]
[22]
S. Sigman, A. Mazumdar, D. M. Perrin, Chem. Rev. 1993, 93,
2295Ϫ2316.
K. Naing, M. Takashani, M. Taniguchi, A. Yamagishi, Inorg.
Chem. 1995, 34, 350Ϫ356.
F. L. Liu, K. A. Meadows, D. R. Millin, J. Am. Chem. Soc.
1993, 115, 6699Ϫ6704.
Y. Xiong, X.-F. He, X.-H. Zou, J.-Z. Wu, X.-M. Chen, L.-N.
Ji, R.-H. Li, J.-Y. Zhou, K.-B. Yu, J. Chem. Soc., Dalton Trans.
1999, 19Ϫ24.
IARC, 1990, 49, 49Ϫ256.
U. Glaser, D. Hochrainer, H. Kloppel, H. Oldiges, Toxicology
1986, 42, 219Ϫ232.
A. Leonard, R. R. Lauwreys, Mutat. Res. 1980, 76, 227Ϫ239.
S. De Flora, M. Bagnasco, D. Serra, P. Zanacchi, Mutat. Res.
1990, 238, 99Ϫ172.
J.-L. Yang, Y.-C. Hsieh, C.-W. Wu, T.-C. Lee, Carcinogenesis
1992, 12, 2053Ϫ2057.
S. Kawanishi, S. Inoue, S. Sano, J. Biol. Chem. 1986, 261,
5952Ϫ5958.
X. Shi, N. S. Dalal, Environ. Health. Perspect. 1994, 102,
231Ϫ236.
A. Kortenkamp, G. Oetken, D. Beyersmann, Mutat. Res. 1990,
232, 155Ϫ161.
A. Mikalsen, J. Alexander, H. Wallin, M. I. Sundberg, R. A.
Andersen, Carcinogenesis 1991, 12, 825Ϫ831.
M. Sugiyama, K. Tsuzuki, R. Ogura, J. Biol. Chem. 1991,
266, 3383Ϫ3386.
R. A. Anderson, Biol. Trace Element Res. 1992, 32, 19Ϫ24.
R. A. Anderson, N. Cheng, N. A. Bryden, M. M. Polansky, N.
Cheng, J. Chi, J. Feng, Diabetes 1997, 46, 1786Ϫ1791.
A. Ravina, L. Slezack, Harefuah 1993, 125, 142Ϫ145.
D. M. Stearns, J. P. Wise, S. R. Patierno, K. E. Wetterhahn,
FASEB J. 1995, 9, 1643Ϫ1648.
In steady state fluorescence experiments, the complex concen-
tration (10 µ) was fixed while that of DNA was varied (200Ϫ800
µ). The chromium() complex in the presence of DNA was ex-
cited at 320 nm and the fluorescence spectra were recorded between
650 and 850 nm.
[23]
[24]
[25]
[26]
Phosphate ester hydrolysis was monitored on a PerkinϪElmer
Lambda 35 spectrophotometer at 25 °C by measuring the pro-
duction of p-nitrophenol at 404 nm. The background reaction was
carried out with the peroxide and ester alone. A reaction mixture
containing CrIII complex 1 (0.025 m), peroxide (0.1 m, freshly
prepared) and p-nitrophenylphosphate (1 m) in Hepes (10 m,
pH 7.0) was used to determine the rate of p-nitrophenol formation
at 404 nm.
[27]
[28]
[29]
[30]
[31]
[32]
For gel electrophoresis experiments, supercoiled pBR322 DNA
(800 ng) was treated with CrIII complex (100 µ) in Tris-EDTA
buffer (10 m, pH 8.0) and the solution was incubated for 16 h at
room temperature. H2O2 (500 µ) was then added and a timed
assay was carried out. The reactions were quenched at various
times by adding loading buffer. The samples were analyzed by elec-
trophoresis for 4 h at 50 V on a 0.8% agarose gel in TrisϪboric
acidϪEDTA buffer. The gel was stained with 0.5 µg/mL ethidium
bromide and photographed under UV light.
[33]
[34]
[35]
[36]
[37]
S. E. Kohlami, M. Gattke, E. M. McIntosh, B. A. Kunz, J.
Mol. Biol. 1991, 220, 933Ϫ946.
Acknowledgments
V. G. V thanks the CSIR for a research fellowship.
[38]
[39]
J. Singh, E. T. Snow, Biochemistry 1998, 37, 9371Ϫ9378.
R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, B. U.
Nair, Biochem. Biophys. Res. Commun. 2000, 271, 731Ϫ734.
R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, B. U.
Nair, Biochim. Biophys. Acta 2000, 1475, 157Ϫ162.
K. D. Sugden, R. D. Geer, S. J. Rogers, Biochemistry 1992,
31, 11626Ϫ11631.
R. Rajan, R. Rajaram, B. U. Nair, T. Ramasami, S. K. Mandal,
Dalton Trans. 1996, 2019Ϫ2020.
V. G. Vaidyanathan, B. U. Nair, J. Inorg. Biochem. 2002, 91,
405Ϫ412.
R. F. Pasternack, E. J. Gibbs, J. J. Villafranca, Biochemistry
1983, 22, 2406Ϫ2414.
M. Erikkson, M. Leijon, G. Hiort, B. Norden, A. Graslund, J.
Am. Chem. Soc. 1992, 114, 4933Ϫ4934.
M. Cory, D. D. McKee, J. Kagan, D. W. Henry, J. A. Miller, J.
Am. Chem. Soc. 1985, 107, 2528Ϫ2536.
M. J. Waring, J. Mol. Biol. 1965, 13, 269Ϫ282.
J. M. Kelly, A. B. Tossi, D. J. McConell, C. OhUigin, Nucleic
Acids Res. 1985, 13, 6017Ϫ6034.
G. A. Neyhart, N. Grover, S. R. Smith, W. A. Kalsbeck, T.
A. Fairley, M. Cory, H. H. Thorp, J. Am. Chem. Soc. 1993,
115, 4423Ϫ4428.
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[1]
S. M. Hecht, Acc. Chem. Res. 1986, 19, 383Ϫ391.
[2]
T. D. Tullius, B. A. Dombroski, Science 1985, 235, 679Ϫ681.
[3]
A. M. Burkoff, T. D. Tullius, Nature 1988, 331, 455Ϫ457.
[4]
A. M. Burkoff, T. D. Tullius, Cell 1987, 48, 935Ϫ943.
[5]
W. K. Pogozelski, T. K. Tullius, Chem. Rev. 1998, 98,
1089Ϫ1108.
[6]
C. J. Burrows, J. G. Muller, Chem. Rev. 1998, 98, 1109Ϫ1152.
[7]
A. E. Friedman, J. K. Barton, J. Am. Chem. Soc. 1990, 112,
4960Ϫ4962.
[8]
R. M. Hartshorn, J. K. Barton, J. Am. Chem. Soc. 1992, 114,
5919Ϫ5925.
C. J. Murphy, J. K. Barton, Methods Enzymol. 1993, 226,
576Ϫ594.
[9]
[10]
Y. Jenkins, A. E. Friedman, N. J. Turro, J. K. Barton, Biochem-
[47]
[48]
istry 1992, 31, 10809Ϫ10816.
C. Turro, S. H. Bossmann, Y. Jenkins, J. K. Barton, N. J. Turro,
[11]
J. Am. Chem. Soc. 1995, 117, 9026Ϫ9032.
N. Gupta, N. Grover, G. A. Neyhart, W. Liang, P. Singh, H.
[49]
[12]
H. Thorpe, Angew. Chem. Int. Ed. Engl. 1992, 31, 1048Ϫ1050.
X.-H. Zou, B.-H. Ye, H. Li, Q.-L. Zhang, H. Chao, J.-G. Liu,
[13]
[50]
[51]
[52]
[53]
F. Liu, K. A. Meadows, D. R. McMillin, J. Am. Chem. Soc.
1993, 115, 6699Ϫ6704.
P. G. Schultz, J. S. Taylor, P. B. Dervan, J. Am. Chem. Soc.
1982, 104, 6861Ϫ6863.
S. Mahadevan, M. Palaniandavar, Inorg. Chem. 1998, 37,
693Ϫ700.
G. Yang, F. Z. Wu, L. Wang, L. NianFi, X. Tina, J. Inorg.
Biochem. 1997, 66, 141Ϫ144.
L.-N. Ji, J. Biol. Inorg. Chem. 2001, 6, 143Ϫ150.
[14]
C. J. Burrows, S. E. Rokita, Acc. Chem. Res. 1994, 27,
295Ϫ301.
[15]
T. D. Tullius, Metal-DNA chemistry, ACS Symposium Series
402, American Chemical Society, Washington DC, 1989, pp.
1Ϫ23.
[16]
A. R. Banerjee, J. A. Jaeger, D. H. Turner, Biochemistry 1993,
32, 153Ϫ163.
Eur. J. Inorg. Chem. 2003, 3633Ϫ3638
2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3637