C O M M U N I C A T I O N S
Table 1. Synthesis of Cyclohexenones from Cyclobutenonesa
also good candidates for this reaction (eq 4). Thus, reaction of 11
with 23, generated from bromide 22 by bromine/lithium exchange,
furnished the hydroisoquinoline derivative 24 in 52% isolated yield.
In summary, we demonstrated nucleophilic addition/4π-ring
opening/6π-ring closing cascade reactions between cyclobutenones
and R-lithio-R,â-unsaturated sulfones and amides leading to func-
tionalized cyclohexenones. Strategic incorporation of electron-
withdrawing groups at the C-2 of the 3-oxido hexatrienes signifi-
cantly lowers the activation energy of the 6π-eletrocyclizations,
which proceed under mild conditions.
Acknowledgment. We thank the Research Corporation and the
University of Rochester for financial support. We are grateful to
Dr. Christine Flaschenriem for the X-ray analyses.
Supporting Information Available: Experimental procedures,
characterization data for all new compounds, and X-ray data (in CIF
format) for 12, 21, and bicyclic sulfone (Table 1, entry 6). This material
References
(1) For reviews, see: (a) Moore, H. W.; Yerxa, B. R. In Synthetic Utility of
Cyclobutenediones; Halton, B., Ed.; JAI Press: Greenwich, CT, 1995;
Vol. 4, pp 81-162. (b) Ohno, M.; Yamamoto, Y.; Eguchi, S. Synlett 1998,
1167-1174. (c) Paquette, L. A. Eur. J. Org. Chem. 1998, 1709-1728.
(2) Key references: (a) Perri, S. T.; Moore, H. W. J. Am. Chem. Soc. 1990,
112, 1897-1905. (b) Xiong, Y.; Moore, H. W. J. Org. Chem. 1996, 61,
9168-9177. (c) Koo, S.; Liebeskind, L. S. J. Am. Chem. Soc. 1995, 117,
3389-3404. (d) Sun, L.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118,
12473-12474. (e) Danheiser, R. L.; Gee, S. K. J. Org. Chem. 1984, 49,
1672-1674. (f) Dudley, G. B.; Takaki, K. S.; Cha, D. D.; Danheiser, R.
L. Org. Lett. 2000, 2, 3407-3410. (g) Morwick, T. M.; Paquette, L. A.
J. Org. Chem. 1997, 62, 627-635.
a Conditions: THF, -78 °C to room temperature, 1-3 h. b Reaction
mixture was heated at 65 °C for 1 h. c In equilibrium with 10-15% of the
cis isomer.
from the competitive [1,7]-sigmatropic hydrogen shift in intermedi-
ate 17. While the driving force for the [1,7]-H shift is also the
formation of a stable enolate of a â-ketosulfone, this process effect-
ively contends with 6π-electrocyclization. This is in line with the
general observation that [1,7]-H shifts are faster than 6π-ERC when
both of these processes are operative.8
Sigmatropic rearrangement can be circumvented by employing
a cyclopropyl-substituted sulfone (entry 5), which undergoes clean
electrocyclic reaction despite the presence of an allylic hydrogen.
In this particular case, the [1,7]-H shift is disfavored as it leads to
a highly strained methylene cyclopropane. The sigmatropic rear-
rangement is geometrically impossible for Z-sulfones, and both
cyclic and acyclic Z-sulfones afford cyclohexenones through 6π-
ERC (entries 6 and 7).11 Not unexpectedly, reaction of dienyl sul-
fone 19 with 11 proceeded via an 8π-ERC to produce 21 (eq 3),12
which exists in the enol form both in the solid state and in solution.
(3) Although benzocyclobutanones can be converted to tetralones by reaction
with vinylmetal reagents, this process is driven by aromatization in the
six-electron cyclization step and is limited to the benzo derivatives: (a)
Arnold, B. J.; Sammes, P. G.; Wallace, T. W. J. Chem. Soc., Perkin Trans.
1 1974, 415-420. (b) Hickman, D. N.; Hodgetts, K. J.; Mackman, P. S.;
Wallace, T. W.; Wardleworth, J. M. Tetrahedron 1996, 52, 2235-2260.
(4) Murakami, M.; Miyamoto, Y.; Ito, Y. J. Am. Chem. Soc. 2001, 123, 6441-
6442. For reviews on charge-accelerated processes, see: (a) Bronson, J.
J.; Danheiser, R. L. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Paquette, L. A., Eds.; Pergamon Press: New York, 1991;
Vol. 5, pp 999-1035. (b) Wilson, S. R. Org. React. 1993, 43, 93-250.
(5) Eisch, J. J.; Galle, J. E. J. Org. Chem. 1979, 44, 3279-3280.
(6) See Supporting Information for details of the control experiments.
(7) Okamura, W. H.; De Lera, A. R. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon Press: New
York, 1991; Vol. 5, pp 699-750.
(8) Mella, M.; Freccero, M.; Albini, A. J. Am. Chem. Soc. 1996, 118, 10311-
10312.
(9) Transformation 14f12 has also been accomplished under conditions that
generated the (E)-enolate of 14.
(10) (a) Kirmse, W.; Rondan, N. G.; Houk K. N. J. Am. Chem. Soc. 1984,
106, 7989-7991. (b) Dolbier, W. R.; Koroniak, H.; Houk, K. N.; Sheu,
C. Acc. Chem. Res. 1996, 29, 471-477.
(11) R-Lithiated R,â-unsaturated sulfones are configurationally stable at
temperatures below -60 °C: Kleijn, H.; Vermeer, P. J. Organomet. Chem.
1986, 302, 1-4.
(12) Reactions of unstabilized dienyllithium reagents and cyclobutenones were
reported to form eight-membered rings: Hamura, T.; Tsuji, S.; Matsumoto,
T.; Suzuki, K. Chem. Lett. 2002, 750-751. 8π-ERCs are involved in
squaric acid cascade developed by Paquette: Paquette, L. A.; Morwick,
T. M. J. Am. Chem. Soc. 1997, 119, 1230-1241.
The overall conversion outlined in Scheme 1 is not limited to
nucleophiles containing the sulfonyl activating group. Αmides are
JA0399066
9
J. AM. CHEM. SOC. VOL. 126, NO. 6, 2004 1625