Journal of the American Chemical Society
Page 8 of 12
Imber, M. Recent Developments in the Stereochemistry of Ollivier, J.; Piras, P. P.; Salaün, J.; de Meijere, A.
1
2
3
4
5
6
7
8
Cyclopropane Ring Opening. Angew. Chem. Int. Ed. Engl.
1968, 7, 577–588; (h) Kirmse, W.; Schütte, H.
Desaminierungsreaktionen, III. Cyclopropyldiazonium-
Ionen und Cyclopropylkationen. Chem. Ber. 1968, 101,
1674–1688; (i) DePuy, C. H. The Chemistry of
Cyclopropanols. Acc. Chem. Res. 1968, 1, 33–41; (j) Gibson,
D. H.; DePuy, C. H. Cyclopropanol chemistry. Chem. Rev.
1974, 74, 605–623; (k) Aksenov, V. S.; Terent’eva, G. A.;
Savinykh, Y. V. Nucleophilic Substitution Reactions of
Cyclopropane Derivatives. Russ. Chem. Rev. 1980, 49, 549–
557.
11. SN1 substitution reactions of some cyclopropane
derivatives are known: Kozhushkov, S. I.; Späth, T.; Kosa,
M.; Apeloig, Y.; Yufit, D. S.; de Meijere A. Relative
Stabilities of Spirocyclopropanated Cyclopropyl Cations.
Eur. J. Org. Chem. 2003, 4234–4242.
Nucleophilic substitutions of 1-alkenylcyclopropyl esters and
1-alkynylcyclopropyl chlorides catalyzed by palladium(0). J.
Am. Chem. Soc. 1992, 114, 4051–4067; (c) Charette, A. B.;
Giroux, A. Palladium-Catalyzed Suzuki-Type Cross-
Couplings of Iodocyclopropanes with Boronic Acids:ꢀ
Synthesis of trans-1,2-Dicyclopropyl Alkenes. J. Org. Chem.
1996, 61, 8718–8719; (d) Charette, A. B.; Pereira De Freitas-
Gil, R. Synthesis of contiguous cyclopropanes by palladium-
catalyzed Suzuki-type cross-coupling reactions. Tetrahedron
Lett. 1997, 38, 2809–2812; (e) Atlan, V.; Racouchot, S.;
Rubin, M.; Bremer, C.; Ollivier, J.; de Meijere, A.; Saulün, J.
Diastereoselective palladium(0)-catalyzed azidation of 1-
alkenylcyclopropyl esters: asymmetric synthesis of (−)-
(1R,2S)-norcoronamic acid. Tetrahedron Asymmetry 1998,
1131–1135; (f) Martin, S. F.; Dwyer, M. P.
Iodocyclopropanes as versatile intermediates for the
synthesis of substituted cyclopropanes. Tetrahedron Lett.
1998, 39, 1521–1524; (g) Luithle, J. E. A.; Pietruszka, J.
(2R,3R)-1,4-Dimethoxy-1,1,4,4-tetraphenyl-2,3-butanediol:ꢀ
Chiral Auxiliary and Efficient Protecting Group for Boronic
Acids. J. Org. Chem. 2000, 65, 9194–9200; (h) Hohn, E.;
Pietruszka, J. Enantiomerically Pure Cyclopropane Building
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
12. Walborsky, H. M. The cyclopropyl radical. Tetrahedron
1981, 37, 1625–1651.
13. Yotsuji, K.; Hoshiya, N.; Kobayashi, T.; Fukuda, H.;
Abe, H.; Arisawa, M.; Shuto, S. Nickel-Catalyzed Suzuki–
Miyaura Coupling of a Tertiary Iodocyclopropane with Wide
Boronic Acid Substrate Scope: Coupling Reaction Outcome
Depends on Radical Species Stability. Adv. Synth. Catal.
2015, 357, 1022–1028.
14. Moragas, T.; Martin, R. Nickel-Catalyzed Reductive
Carboxylation of Cyclopropyl Motifs with Carbon Dioxide.
Synthesis 2016, 48, 2816–2822.
15. (a) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.;
Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate,
M. D.; Baran, P. S. Practical Ni-Catalyzed Aryl–Alkyl Cross-
Coupling of Secondary Redox-Active Esters. J. Am. Chem.
Soc. 2016, 138, 2174–2177; (b) Qin, T.; Malins, L. R.;
Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J.
Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran,
P. S. Nickel-Catalyzed Barton Decarboxylation and Giese
Reactions: A Practical Take on Classic Transforms. Angew.
Chem. Int. Ed. 2017, 56, 260–265; (c) Li, C.; Wang, J.;
Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.;
Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran,
P. S. Decarboxylative borylation. Science 2017, 356,
eaam7355; (d) Chen, T.-G.; Barton, L. M.; Lin, Y.; Tsien, J.;
Kossler, D.; Bastida, I.; Asai, S.; Bi, C.; Chen, J. S.; Shan,
M.; Fang, H.; Fang, F. G.; Choi, H.; Hawkins, L.; Qin, T.;
Baran, P. S. Building C(sp3)-rich complexity by combining
cycloaddition and C–C cross-coupling reactions. Nature
2018, 560, 350–354.
16. Liao, J.; Basch, C. H.; Hoerrner, M. E.; Talley, M. R.;
Boscoe, B. P.; Tucker, J. W.; Garnsey, M. R.; Watson, M. P.
Deaminative Reductive Cross-Electrophile Couplings of
Alkylpyridinium Salts and Aryl Bromides. Org. Lett. 2019,
21, 2941–2946.
17. For a review: Rubin, M.; Rubina, M.; Gevorgyan, V.
Transition Metal Chemistry of Cyclopropenes and
Cyclopropanes. Chem. Rev. 2007, 107, 3117–3179.
18. For select transition metal–catalyzed functionalization
reactions of cyclopropyl electrophiles: (a) Stolle, A.; Salaün,
J.; de Meijere, A. Palladium(0) catalyzed substitution
reactions of cyclopropyl group containing allylic esters.
Tetrahedron Lett. 1990, 31, 4593–4596; (b) Stolle, A.;
Blocks:
Synthesis
and
Transformations
of
2-
Iodocyclopropylboronic Esters. Adv. Synth. Catal. 2004, 346,
863–866; (i) Wu, X.; Lecornué, F.; Charnay-Pouget, F.;
Ollivier, J. π-Allyl Palladium Complexes as Efficient and
Powerful Alternative for Nucleophilic Substitution on
Bicyclo[3.1.0]hexane Sulfonates: Regio-, Chemo- and
Stereoselectivity. Synlett 2006, 1407–1409; (j) Lei, C.; Yue,
G.; Zhou, J. Palladium-Catalyzed Direct Cyclopropylation of
Heterocycles. Angew. Chem. Int. Ed. 2015, 54, 9601–9605;
(k) Allouche, E. M. D.; Taillemaud, S.; Charette, A. B.
Spectroscopic characterization of (diiodomethyl)zinc iodide:
application to the stereoselective synthesis and
functionalization of iodocyclopropanes. Chem. Commun.
2017, 53, 9606–9609.
19. Pioneering references: (a) Kulinkovich, O. G.; Sviridov,
S. V.; Vasilevskii, D. A.; Pritytskaya, T. S. Reaction of
ethylmagnesium bromide with carboxylic esters in the
presence of tetraisopropoxytitanium. Zh. Org. Chem. 1989,
25, 2244–2245; (b) Kulinkovich, O. G.; Sviridov, S. V.;
Vasilevski, D. A. Titanium(IV) Isopropoxide-Catalyzed
Formation of 1-Substituted Cyclopropanols in the Reaction
of
Ethylmagnesium
Bromide
with
Methyl
Alkanecarboxylates. Synthesis, 1991, 234–234; Reviews: (c)
Kulinkovich, O. G. The Chemistry of Cyclopropanols. Chem.
Rev. 2003, 103, 2597–2632; (d) Mills, L. R.; Rousseaux, S.
A. L. Modern Developments in the Chemistry of
Homoenolates. Eur. J. Org. Chem. 2019, 8–26.
20. Talele, T. T. The “Cyclopropyl Fragment” is a Versatile
Player that Frequently Appears in Preclinical/Clinical Drug
Molecules. J. Med. Chem. 2016, 59, 8712–8756.
21. Wu, W.; Lin, Z.; Jiang, H. Recent advances in the
synthesis of cyclopropanes. Org. Biomol. Chem. 2018, 16,
7315–7329.
22. (a) Faul, M. M.; Ratz, A. M.; Sullivan, K. A.; Trankle,
W. G.; Winneroski, L. L. J. Org. Chem. 2001, 66, 5772–
5782; (b) Kuk, K.; Taylor-Cousar, J. L. Ther. Adv. Respir.
Dis. 2015, 9, 313–326.
ACS Paragon Plus Environment