New palladacycles derived from chiral α-diimines
last cycles. H atoms were placed in idealized positions and re-
fined using a riding model with fixed isotropic displacement
parameters. The configurations of the chiral centers S-C7 and
[9] A. Yu, B. Cheng, Y. Wu, J. Li, K. Wei, Tetrahedron Lett. 2008, 49, 5405.
[10] V. A. Kozlov, D. V. Aleksanyan, Y. V. Nelyubina, K. A. Lyssenko,
E. I. Gutsul, L. N. Puntus, A. A. Vasil’ev, P. V. Petrovskii, I. L. Odinets,
Organometallics 2008, 27, 4062.
[11] M. Broering, C. Kleeberg, S. Koehler, Inorg. Chem. 2008, 47, 6404.
[12] B. Ine´s, R. SanMartin, F. Churruca, E. Domínguez, M. K. Urtiaga,
M. I. Arriortua, Organometallics 2008, 27, 2833.
S-C12 were determined from the refinement of
a Flack
parameter,[46] x = 0.01(4), based on the measurement of 1867
Friedel pairs.
[13] A. Yu, J. Li, M. Cui, Y. Wu, Synlett 2007, 3063.
[14] C. Xu, J.-F. Gong, T. Guo, Y.-H. Zhang, Y.-J. Wu, J. Mol. Cat. A: Chem.
Assay for Anticancer Activity
2008, 279, 69–76.
[15] J.-Y. Li, A.-J. Yu, Y.-J. Wu, Y. Zhu, C.-X. Du, H.-W. Yang, Polyhedron
2007, 26, 2629.
Colon cancer (HCT-15), breast cancer (MCF-7), leukemia (K-562
CML), central nervous system (U-251 Glio) and prostate cancer
(PC-3) cell lines were supplied by the National Cancer Institute
(USA). Cytotoxicity of the tumors cells with the test compounds
was determined using the protein-binding dye sulforhodamine
B (SRB) in microculture assay to measure cell viability and cell
growth., as described in Monks et al.[47] The cell lines were
cultured in RPMI-1640 supplemented with 10% fetal bovine
serum, 2 mM L-glutamine, 100 IU ml−1 penicillin G, 100 µg ml−1
streptomycin sulfate and 0.25 µg ml−1 amphotericin B (Gibco).
They were maintained at 37 ◦C in a 5% CO2 atmosphere with
95% humidity. For the assay, cells were detached with 0.1%
trypsin-EDTA to make single-cell suspension, and viable cells were
counted using a hematocytometer and diluted with medium to
give5×104 cells ml−1 (K562, MCF-7), 7.5×104 cellsperwell(U251,
PC-3) and 10 × 104 cells per well (HCT-15). In 96-well microtiter
plates, 100 µl per well of these cell suspensions were seeded and
incubated to allow for cell attachment. After 24 h the cells were
treated with logarithmic concentrations of the test products and
the positive control, doxorubicin. They were initially dissolved in
DMSO (40 mM) and further diluted in medium to produce five
concentration test solutions (100, 31, 10, 3.1 and 1 µM). Aliquots
of 100 µl of each test solution with the compound for evaluation
were added to each well. After 48 h, adherent cell cultures were
fixed in situ by adding 50 µl of cold 50% (w/v) trichloacetic acid
(TCA) and incubated for 60 min at 4 ◦C. The supernatant was
discarded and the plates were washed three times with water and
air-dried. Cultured fixed with TCA were stained for 30 min with
100 µl of SRB solution (0.4% w/v in 1% acetic acid). Unbound
SRB was removed by four washes with 1% acetic acid and
protein-bound dye was extracted with 10 mM unbuffered tris
base (tris[hydroxymetryl] aminomethane); the optical densities
were read on an automated spectrophotometric plate reader at
a single wavelength of 515 nm. The IC50 (concentrations required
to inhibit cell growth by 50%) was calculated according to the
protocol previously established.[47] Mean and standard error (SE)
of three independent experiments are reported for each selected
concentration of the studied compound.
[16] J. Ma, X. Cui, L. Gao, Y. Wu, Inorg. Chem. Commun. 2007, 10, 762.
[17] C. Xu, J.-F. Gong, Y.-J. Wu, Tetrahedron Lett. 2007, 48, 1619.
[18] X. M. Zhao, X. Q. Hao, B. Liu, M. L. Zhang, M. P. Song, Y. J. Wu,
J. Organomet. Chem. 2006, 691, 255.
[19] J. Spencer, D. P. Sharratt, J. Dupont, A. L. Monteiro, V. I. Reis,
M. P. Stracke, F. Rominger, I. M. McDonald, Organometallics 2005,
24, 5665.
[20] A. I. Matesanz, P. Souza, J. Inorg. Biochem. 2007, 101, 1354.
[21] D. Pucci, V. Albertini, R. Bloise, A. Bellusci, A. Cataldi, C. V. Catapano,
M. Ghedini, A. Crispini, J. Inorg. Biochem. 2006, 100, 1575.
[22] E. G. Rodrigues, L. S. Silva, D. M. Fausto, M. S. Hayashi, S. Dreher, E. L.
Santos, J. B. Pesquero, L. R. Travassos, A. C. F. Caires, Int. J. Cancer
2003, 107, 498.
[23] L. Tusek-Bozic, M. Komac, M. Curic, A. Lycka, M. D’Alpaos, V. Scarcia,
A. Furlani, Polyhedron 2000, 19, 937.
[24] X. Riera, A. Caubet, C. Lo´pez, V. Moreno, Polyhedron 1999, 18, 2549.
[25] J. D. Higgins, L. Neely, S. Fricker, J. Inorg. Biochem. 1993, 49, 149.
[26] V. V. Dunina, P. A. Zykov, M. V. Livantsov, I. V. Glukhov, K. A.
Kochetkov, I. P. Gloriozov, Y. K. Grishin, Organometallics 2009, 28,
425.
[27] M. Ghedini, D. Pucci, A. Vinuales, Mol. Cryst. Liq. Cryst. 2007, 465, 59.
[28] L.-Z. Du, J.-F. Gong, C. Xu, Y. Zhu, Y.-J. Wu, M.-P. Song, Inorg. Chem.
Commun. 2006, 9, 410.
[29] L. L. Troitskaya, Z. A. Starikova, T. V. Demeshchik, S. T. Ovseenko,
E. V. Vorontsov, V. I. Sokolov, J. Organomet. Chem. 2005, 690, 3976.
[30] C. Bincoletto, I. L. S. Tersariol, C. R. Oliveira, S. Dreher, D. M. Fausto,
M. A. Soufen, F. D. Nascimento, A. C. F. Caires, Bioorg. & Med. Chem.
2005, 13, 3047.
[31] J.-M. Camus, P. R. Garcia, J. Andrieu, P. Richard, R. Poli, J.Organomet.
Chem. 2005, 690, 1659.
[32] W.-C. Yeo, S.-Y. Tee, H.-B. Tan, G.-K. Tan, L. L. Koh, P.-H. Leung, Inorg.
Chem. 2004, 43, 8102.
[33] P. Dotta, P. G. A. Kumar, P. S. Pregosin, A. Albinati, S. Rizzato,
Organometallics 2004, 23, 4247.
[34] Y. Li, S. Selvaratnam, J. J. Vittal, P.-H. Leung, Inorg. Chem. 2003, 42,
3229.
[35] Y. Wang, X. Li, J. Sun, K. Ding, Organometallics 2003, 22, 1856.
[36] A. Berger, J.-P. Djukic, M. Pfeffer, A. de Cian, N. Kyritsakas-Gruber,
J. Lacour, L. Vial, Chem. Commun. 2003, 658.
[37] C. Bolm, K. Wenz, G. Raabe, J. Organomet. Chem. 2002, 662, 23.
[38] N. Guel, J. H. Nelson, A. C. Willis, A. D. Rae, Organometallics 2002, 21,
2041.
[39] X. Riera, C. Lo´pez, A. Caubet, V. Moreno, X. Solans, M. Font-Bardía,
Eur. J. Inorg. Chem. 2001, 2135.
[40] V. V. Dunina, O. N. Gorunova, M. V. Livantsov, Y. K. Grishin,
Tetrahedron: Asymmetry 2000, 11, 2907.
[41] N. Gul, J. H. Nelson, Tetrahedron 1999, 56, 71–78.
[42] M. A. Pela´ez, T. Ramírez, M. Martínez, P. Sharma, C. Alvarez,
R. Gutie´rrez, Z. Anorg. Allg. Chem. 2004, 630, 1489.
[43] M. Kang, A. Sen, L. Zakharov, A. L. Rheingold, J.Am.Chem.Soc. 2002,
124, 120801.
[44] G. M. Sheldrick, SHELXTL-plus, release 5.10. Siemens Analytical X-ray
Instruments Inc.: Madison, WI, 1998.
[45] XSCAnS Users Manual, release 2.21. Siemens Analytical X-ray
Instruments Inc.: Madison, WI, 1996.
References
[1] J. Dupont, C. S. Consorti, J. Spencer, Chem. Rev. 2005, 105, 2527.
[2] I. P. Beletskaya, A. V. Cheprakov, J. Organomet. Chem. 2004, 689,
4055.
[3] I. Omae, Coord. Chem. Rev. 2004, 248, 995.
[4] R. B. Bedford, C. S. J. Cazin, D. Holder, Coord. Chem. Rev. 2004, 248,
2283.
[5] F. Bellina, A. Carpita, R. Rossi, Synthesis 2004, 15, 2419.
[6] M. E. van der Boom, D. Milstein, Chem. Rev. 2003, 103, 1759.
[7] J. Ma, X. Cui, D. Yang, J. Wu, M. Song, Y. Wu, Appl. Organomet. Chem.
2008, 22, 624.
[46] H. D. Flack, Acta Cryst. 1983, A39, 876.
[47] A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paul, D. Vistica,
C. Hose, J. Langley, P. Cronise, A. Vaigro-Woff, M. Gray-Goodrich,
H. Campbell,J. Mayo,M. Boyd,J.NatlCancerInst.1991,83,757–766.
[8] J. M. Chitanda, D. E. Prokopchuk, J. W. Quail, S. R. Foley, Dalton
Trans. 2008, 6023.
c
Appl. Organometal. Chem. 2010, 24, 8–11
Copyright ꢀ 2009 John Wiley & Sons, Ltd.