C O M M U N I C A T I O N S
(12) The relatiVe pKa of two hydride complexes should be similar in H2O,
CH3CN, or CH2Cl2. (a) Jia, G.; Morris, R. H. Inorg. Chem. 1990, 29,
581-582. (b) Kristja´nsdo´ttir, S. S.; Norton, J. R. Acidity of Hydrido
Transition Metal Complexes in Solution. In Transition Metal Hydrides;
Dedieu, A., Ed.; VCH: New York, 1991; Chapter 9.
With CpCr(CO)3H we were able to make the cyclizations of
4(a,b) catalytic by performing them under hydrogen pressure, which
regenerates the hydride from Cr• as in eq 10.3
(13) (a) Casey, C. P.; Whiteker, G. T. Isr. J. Chem. 1990, 30, 299-304. (b)
Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Eur. J.
Inorg. Chem. 1998, 25-27. (c) Dierkes, P.; van Leeuwen, P. W. N. M.
J. Chem. Soc., Dalton Trans. 1999, 1519-1529.
2 CpCr(CO)3H h H2 + 2 CpCr(CO)3•
(10)
(14) CSD version 5.28 (November 2006).
However, when we treated 4a or 4b with a catalytic amount of
1(a, b, c, or d) under 80 psi of H2 at 50 °C, little or no 5 was
formed. Apparently the reaction in eq 6 does not proceed at an
appreciable rate in either direction under ordinary conditions.
(15) Angelici and co-workers proposed a similar explanation for the fact that
cis-Mo(CO)2(dppm)2 is more basic than its dppe and dppp analogues.
Sowa, J. R., Jr.; Bonanno, J. B.; Zanotti, V.; Angelici, R. J. Inorg. Chem.
1992, 31, 1370-1375.
(16) Mader, E. A.; Davidson, E. R.; Mayer, J. M. J. Am. Chem. Soc. 2007,
129, 5153-5166.
(17) The dissociation energy of V-H in the gas phase has been measured by
guided ion beam mass spectrometry; the BDE obtained was 49.0(16) kcal/
mol. (a) Chen, Y.; Clemmer, D. E.; Armentrout, P. B. J. Chem. Phys.
1993, 98, 4929-4936. (b) Armentrout, P. B.; Kickel, B. L. Gas Phase
Thermochemistry of Transition Metal Ligand Systems: Reassessment of
Values and Periodic Trends. In Organometallic Ion Chemistry; Freiser,
B. S., Ed.; Kluwer: Boston, 1996; pp 1-45.
Acknowledgment. This work has been supported by DOE Grant
DE-FG02-97ER14807. The authors are grateful to Prof. J. Ellis
for a generous donation of [Et4N][V(CO)6], to Prof. Ellis and Prof.
C. D. Hoff for helpful discussions, and to the reviewers for useful
comments.
(18) Smaller values of ∆G°(H•) have been reported for two cationic hydride
complexes: (a) 52.6 kcal/mol for Ni(Ph2PCHdCHPPh2)2+, in Berning,
D. E.; Miedaner, A.; Curtis, C. J.; Noll, B. C.; DuBois, D. L. Organo-
metallics 2001, 20, 1832-1839. (b) 49.9 kcal/mol for the paramagnetic
[HCo(dppe)2]+, in Ciancanelli, R.; Noll, B. C.; DuBois, D. L.; DuBois,
M. R. J. Am. Chem. Soc. 2002, 124, 2984-2992.
Supporting Information Available: Synthetic details, kinetic
procedures and data, and details of pKa measurements and electro-
chemistry. This material is available free of charge via the Internet at
(19) The relatiVe BDE values of our M-H bonds have an uncertainty, derived
from the variation in pKa and E° results over repeated measurements of
(0.3 kcal/mol.
References
(20) The absolute uncertainty in such BDE values is problematic, involving
(a) the difference in ∆S° between 1 and 2 (see text above eq 5). (b) the
uncertainty in the free energy of solvation of H• (∆G°f(H•) in CH3CN
has been estimated as 51.8 kcal/mol).21 (c) the absolute accuracy of the
unified CH3CN scale we have used (ref 11). Comparison of such BDE
values with those from calorimetry22 and considerations of internal
consistency suggest that the absolute uncertainty of our BDE values is a
little over 1 kcal/mol. For a detailed discussion of these issues, see Choi,
Jongwook. Ph.D. Thesis, Columbia University, 2007.
(1) (a) Halpern, J. Pure Appl. Chem. 1986, 58, 575-584. (b) Eisenberg, D.
C.; Norton, J. R. Isr. J. Chem. 1991, 31, 55-66.
(2) (a) Gridnev, A. A.; Ittel, S. D. Chem. ReV. 2001, 101, 3611-3659. (b)
Heuts, J. P. A.; Roberts, G. E.; Biasutti, J. D. Aust. J. Chem. 2002, 55,
381-398.
(3) Smith, D. M.; Pulling, M. E.; Norton, J. R. J. Am. Chem. Soc. 2007, 129,
770-771.
(4) Tilset, M. Organometallic Electrochemistry: Thermodynamics of Metal-
Ligand Bonding. In ComprehensiVe Organometallic Chemistry III;
Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: 2007; Vol. 1, pp 279-
305. TpCr(CO)3H is listed with a BDE of 51.4 kcal/mol, although it has
not been isolated. Its pKa has been estimated from its extensive
deprotonation in CH3CN even when no base is added.
(21) Wayner, D. D. M.; Parker, V. D. Acc. Chem. Res. 1993, 26, 287-294.
(22) Kiss, G.; Zhang, K.; Mukerjee, S. L.; Hoff, C. D.; Roper, G. C. J. Am.
Chem. Soc. 1990, 112, 5657-5658.
(23) It has been suggested22 that M-H bonds weaker than 56 kcal/mol are
thermodynamically unstable at room temperature with respect to H2
evolution. This estimate is based on the observed ∆S for the binding of
H2 to L2M(CO)3 (M ) Cr, Mo): Gonzalez, A. A.; Hoff, C. D. Inorg.
Chem. 1989, 28, 4295-4297.
(5) (a) Franke, U.; Weiss, E. J. Organomet. Chem. 1978, 152, C19-C23. (b)
Franke, U.; Weiss, E. J. Organomet. Chem. 1980, 193, 329-337.
(6) Uddin, J.; Morales, C. M.; Maynard, J. H.; Landis, C. R. Organometallics
2006, 25, 5566-5581.
(24) (a) Bullock, R. M.; Samsel, E. G. J. Am. Chem. Soc. 1990, 112, 6886-
6898. (b) Tang, L.; Papish, E. T.; Abramo, G. P.; Norton, J. R.; Baik, M.;
Friesner, R. A.; Rappe´, A. J. Am. Chem. Soc. 2003, 125, 10093-10102,
and 2006, 128, 11314.
(7) (a) Davison, A.; Ellis, J. E. J. Organomet. Chem. 1972, 36, 131-136. (b)
Puttfarcken, U.; Rehder, D. J. Organomet. Chem. 1978, 157, 321-325.
(8) (a) Breslow, R.; Balasubramanian, K. J. Am. Chem. Soc. 1969, 91, 5182-
5183. (b) Breslow, R.; Chu, W. J. Am. Chem. Soc. 1973, 95, 411-418.
(c) Bordwell, F. G.; Cheng, J. P.; Harrelson, J. A., Jr. J. Am. Chem. Soc.
1988, 110, 1229-1231. (d) Tilset, M.; Parker, V. D. J. Am. Chem. Soc.
1989, 111, 6711-6717 and 1990, 112, 2843. (e) Parker, V. D.; Handoo,
K. L.; Roness, F.; Tilset, M. J. Am. Chem. Soc. 1991, 113, 7493-7498.
(9) Ihmels, K.; Rehder, D. J. Organomet. Chem. 1981, 218, C54-C56.
(10) With PhCH2NH2 in CH3CN (taking the pKa of PhCH2NH3+ as 16.91, its
value on the unified scale recently published (ref 11) for CH3CN) we
found the pKa of Cp*Cr(CO)3H to be 17.0(1). The somewhat smaller
number (16.1) given by Tilset (Tilset, M. J. Am. Chem. Soc. 1992, 114,
2740-2741) was obtained from the calorimetrically determined Cr-H
bond strength and the measured E°.
(25) The hydrogenation of styrene (both stoichiometric and catalytic) by a
dinuclear vanadium hydride V2(µ-H)2 has been reported: Aharonian, G.;
Gambarotta, S.; Yap, G. P. A. Organometallics 2001, 20, 5008-5010.
(26) Choi, J.; Tang, L.; Norton, J. R. J. Am. Chem. Soc. 2007, 129, 234-240.
(27) See reference 71 in Gardner, K. A.; Kuehnert, L. L.; Mayer, J. M. Inorg.
Chem. 1997, 36, 2069-2078.
(28) If we use the pKa value of pyridinium H+ (12.53) from the new unified
CH3CN scale,11 the pKa of CpCr(CO)3H becomes 13.55. Using this pKa
in eq 3 gives the Cr-H BDE in CpCr(CO)3H as 62.2 kcal/mol, which we
have shown for consistency in place of the previously published values
of 62 kcal/mol (thermodynamic cycle)8d and 61.5 (calorimetric).22
(29) Kaneti, J.; Kirby, A. J.; Koedjikov, A. H.; Pojarlieff, I. G. Org. Biomol.
Chem. 2004, 2, 1098-1103.
(11) Kaljurand, I.; Ku¨tt, A.; Soova¨li, L.; Rodima, T.; Ma¨emets, V.; Leito, I.;
Koppel, I. A. J. Org. Chem. 2005, 70, 1019-1028.
JA710455C
9
4252 J. AM. CHEM. SOC. VOL. 130, NO. 13, 2008