3780
K. C. Nicolaou et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3776–3780
(5% yield)9 plus 4d (7% yield) from 1d; 3e (8% yield)10d,11 plus 3e0
(6% yield) plus 4e (<2% yield) from 1e; and 3f (25% yield) from
1f.8,9,12,14 Changing the solvent from CH2Cl2 to benzene and heating
at 80 °C, the PIFA reaction with 1a–f mostly favors the formation of
motif 4, producing 4a (12% yield) from 1a; 4b (<2% yield) from 1b,
among a complex mixture of other products; 4c (22% yield) from
1c; 4d (<2% yield) from 1d; and 4e (10% yield) plus 3e (<2% yield)
plus 3e0 (<2% yield) from 1e. Derivative 4e0 (83% yield) was pre-
pared from 4e as indicated in Scheme 4. The formation of products
3a–f is presumed to proceed via either the addition–elimination
pathway13d,e (intermediate 12a), or the phenoxenium ion path-
way13d,e (phenoxenium ion 12b and its resonance counterpart—
carbenium ion 12c) as demonstrated in Scheme 4. The generation
of compounds 4a–e is assumed to proceed through fleeting inter-
mediates 12b, 12c and 12d (1,4-quinomethine) (Scheme 4).
Supplementary data
Supplementary data contains experimental procedures, cell via-
bility studies and NMR spectra. Supplementary data associated
with this article can be found, in the online version, at http://
References and notes
1. Nicolaou, K. C.; Montagnon, T. Molecules that Changed the World; Wiley-VCH:
Weinheim, 2008. pp. 1–366.
2. (a) Ganis, P.; Avitabile, G.; Mechinski, W.; Shaffner, C. P. J. Am. Chem. Soc. 1971,
93, 4560; (b) Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.; Morton, G. O.;
Borders, D. B J. Am. Chem. Soc. 1987, 109, 3464; (c) Smith, A. L.; Nicolaou, K. C. J.
Med. Chem. 1996, 39, 2103; (d) Oberlies, N. H.; Kroll, D. J. J. Nat. Prod. 2004, 67,
129; (e) Nicolaou, K. C.; Chen, J. S.; Dalby, S. M. Bioorg. Med. Chem. 2009, 17,
2290.
3. (a) Kuznetsov, G.; Towle, M. J.; Cheng, H.; Kawamura, T.; TenDyke, K.; Liu, D.;
Kishi, Y.; Yu, M. J.; Littlefield, B. A. Cancer Res. 2004, 64, 5760; (b) Kim, D.-S.;
Dong, C.-G.; Kim, J. T.; Guo, H.; Kishi, Y. J. Am. Chem. Soc. 2009, 131, 15636; (c)
Towle, M. J.; Salvato, K. A.; Wels, B. F.; Aalfs, K. K.; Zheng, W.; Seletsky, B. M.;
Zhu, X.; Lewis, B. M.; Kishi, Y.; Yu, M. J.; Littlefield, B. A. Cancer Res. 2011, 71,
496.
4. Nicolaou, K. C.; Sanchini, S.; Sarlah, D.; Lu, G.; Wu, T. R.; Nomura, D. K.; Cravatt,
B. F.; Cubitt, B.; de la Torre, J. C.; Hessell, A. J.; Burton, D. R. Proc. Natl. Acad. Sci.
U.S.A. 2011, 108, 6715.
5. (a) Cragg, G. M.; Newman, D. J.; Snader, K. M. J. Nat. Prod. 1997, 60, 52; (b)
Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461.
6. Graening, T.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2004, 43, 3230.
7. (a) Alali, F. Q.; El-Elimat, T.; Li, C.; Qandil, A.; Alkofahi, A.; Tawaha, K.; Burgess, J.
P.; Nakanishi, Y.; Kroll, D. J.; Navarro, H. A.; Falkinham, J. O.; Wani, M. C.;
Oberlies, N. H. J. Nat. Prod. 2005, 68, 173; (b) Al-Mahmoud, M. S.; Alali, F. Q.;
Tawaha, K.; Qasaymeh, R. M. Nat. Prod. Res. 2006, 20, 153; (c) Alali, F. Q.;
Tawaha, K.; El-Elimat, T.; Qasaymeh, R.; Li, C.; Burgess, J.; Nakanishi, Y.; Kroll, D.
J.; Wani, M. C.; Oberlies, N. H. Nat. Prod. Res. 2006, 20, 558; (d) Yasobu, N.;
Kitajima, M.; Kogure, N.; Shishido, Y.; Matsuzaki, T.; Nagaoka, M.; Takayama, H.
Med. Chem. Lett. 2011, 2, 348.
Compounds 5a–e were prepared from isoquinoline 1315 as
summarized in Scheme 5. Thus, benzylation or methylation of 13
(K2CO3, BnBr or MeI) and subsequent reduction with lithium
aluminum hydride (LAH) gave rather labile derivative 14a or
14b. Heating the latter compounds in the presence of HCOOH–
15
H3PO4 led, through presumed iminium species 15, to 5a (19%
overall yield) from 13, 5c (38% overall yield) plus 5d (14% overall
yield) from 13. Acetylation of 5a and 5d led to derivatives 5b
(80% yield) and 5e (70% yield), respectively.
Scheme 6 summarizes the reaction of isoquinoline 13 with
PIFA leading first to the previously mentioned (see Scheme 3) tet-
racyclic product 11a (11% yield) and thence to pentacyclic
compound 17 (7% yield from 13). This process is believed to pro-
ceed through intermediates 16a, 16b, and 16c as depicted in
Scheme 6.
Colchicine exerts its cytotoxic activity through tubulin binding
that disturbs the tubulin-microtubule equilibrium.6 As we men-
tioned before, colchicine is highly potent against the colorectal
adenocarcinoma cell line HT-29. The synthesized colchicinoid
and related compounds were, therefore, assayed for cytotoxicity
against HT-29 cancer cells using the MTT assay [3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide]. The so obtained
IC50 values are shown in Figure 2, together with that found for col-
8. (a) Leete, E.; Nemeth, P. E. J. Am. Chem. Soc. 1960, 82, 6055; (b) Barker, A. C.;
Battersby, A. R.; McDonald, E.; Ramage, R.; Clements, J. H. J. Chem. Soc., Chem.
Commun. 1967, 390; (c) Battersby, A. R.; McDonald, E.; Stachulski, A. V. J. Chem.
Soc., Perkin Trans. 1 1983, 3053; (d) Herbert, R. B.; Kattah, A. E.; Knagg, E. .
Tetrahedron 1990, 46, 7119; (e) Nasreen, A.; Rueffer, M.; Zenk, M. H. Tetrahedron
Lett. 1996, 37, 8161; (f) Maier, U. H.; Zenk, M. H. Tetrahedron Lett. 1997, 38,
7357; (g) Nasreen, A.; Gundlach, H.; Zenk, M. H. Photochemistry 1997, 46, 107;
(h) McDonald, E.; Ramage, R.; Woodhouse, R. N.; Underhill, E. W.; Wetter, L. R.;
Battersby, A. R. J. Chem. Soc., Perkin Trans. 1 1998, 2979.
9. Ogasawara, H.; Tasaki, S.; Mutoh, F.; Hara, H.; Nishikawa, H.; Tanaka, M.;
Hoshino, O. Heterocycles 1994, 37, 1657.
chicine (IC50 ꢃ0.01
11e, 11f, 11g, and 11h exhibited the highest cytotoxic activity in
this assay (IC50 values = 0.132–0.684 M, in red). Compounds 2a,
2e, 4c0, 5a, 8c, 10b, 11c, and 11d exhibited lower potencies (IC50
values = 0.99–9.10 M, in blue), while the rest of the compounds
lM) for comparison. Compounds 10a, 11a, 11b,
10. (a) Brossi, A.; Burik, J.; Teitel, S. Helv. Chim. Acta 1968, 51, 1965; (b) Battersby, A.
R.; Herbert, R. B.; Pijewska, L.; Santavy, F.; Sedmera, P. J. Chem. Soc., Perkin
Trans. 1 1972, 1736; (c) Hoshino, O.; Toshioka, T.; Ohyama, K.; Umezawa, B.
Chem. Pharm. Bull. 1974, 22, 1307; (d) Kupchan, S. M.; Dhingra, O. P.; Kim, C.-K.
J. Org. Chem. 1978, 43, 4076; (e) Taylor, E. C.; Andrade, J. G.; Rall, G. J. H.;
McKillop, A. J. Am. Chem. Soc. 1980, 102, 6513; (f) Seo, J. W.; Srisook, E.; Son, H.
J.; Hwang, O.; Cha, Y.-N.; Chi, D. Y. Eur. J. Med. Chem. 2008, 43, 1160.
11. (a) Kupchan, S. M.; Liepa, A. J. J. Am. Chem. Soc. 1973, 95, 4062; (b) Kupchan, S.
M.; Dhingra, O. P.; Kim, C.-K.; Kameswaran, V. J. Org. Chem. 1976, 41, 4049; (c)
Kupchan, S. M.; Dhingra, O. P.; Kim, C.-K.; Kameswaran, V. J. Org. Chem. 1978,
43, 2521; (d) Kupchan, S. M.; Dhingra, O. P.; Kim, C.-K. J. Org. Chem. 1978, 43,
4464.
12. (a) Kametani, T.; Koizumi, M.; Fukumoto, K. J. Org. Chem. 1971, 36, 3729; (b)
Battersby, A. R.; Bradbury, R. B.; Herbert, R. B.; Munro, M. H. G.; Ramage, R. J.
Chem. Soc., Perkin Trans. 1 1974, 1394; (c) Hara, H.; Hoshino, O.; Umezawa, B.;
Iitaka, Y. J. Chem. Soc., Perkin Trans. 1 1979, 2657.
13. (a) Kita, Y.; Takada, T.; Gyoten, M.; Tohma, H.; Zenk, M. H.; Eichhorn, J. J. Org.
Chem. 1996, 61, 5857; (b) Kita, Y.; Arisawa, M.; Gyoten, M.; Nakajima, M.;
Hamada, R.; Tohma, H.; Takada, T. J. Org. Chem. 1998, 63, 6625; (c) Pelish, H. E.;
Westwood, N. J.; Feng, Y.; Kirchhausen, T.; Shair, M. D. J. Am. Chem. Soc. 2001,
123, 6740; (d) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523; (e) Yu, Z.;
Ju, X.; Wang, J.; Yu, W. Synthesis 2011, 6, 860.
l
l
showed either low activity (IC50 values <50
lM, in black) or their
activity was not determined (n.d., in black).
The bio-inspired investigation of the reactions of autumnaline
derivatives 1a–f led to series of novel colchicine-related
a
compounds. Biological evaluation of these compounds identified
several agents with significant cytotoxicity against HT-29 cancer
cells. Among them, the most potent ones were compounds 11a,
11b and 11e–h. These results suggest these molecular scaffolds
as leads for further studies aiming at new biological tools and
potential therapies for the treatment of cancer.
Acknowledgements
14. (a) Kametani, T.; Koizumi, M.; Fukumoto, K. J. Chem. Soc. (C) 1971, 1792; (b)
Kametani, T.; Kohno, T.; Charubala, R.; Fukumoto, K. Tetrahedron 1972, 28,
3227; (c) Schwartz, M. A.; Rose, B. F.; Vishnuvajjala, B. J. Am. Chem. Soc. 1973,
95, 612; (d) Hara, H.; Hoshino, O.; Umezawa, B. Heterocycles 1976, 5, 213; (e)
Kametani, T.; Ihara, M.; Takemura, M.; Satoh, Y.; Terasawa, H.; Ohta, Y.;
Fukumoto, K.; Takahashi, K. J. Am. Chem. Soc. 1977, 99, 3805; (f) Hara, H.;
Hoshino, O.; Ishige, T.; Umezawa, B. Chem. Pharm. Bull. 1981, 29, 1083; (g)
Sedmera, P.; Husek, A.; Simanek, V. Acta Univ. Palacki. Olomue. (Olomoue), Fac.
Med. 1991, 129, 297.
We thank Drs. D.H. Huang and L. Pasternack for NMR spectro-
scopic assistance, Dr. G. Siuzdak for mass spectrometric assistance
and Dr. E. Hamel for helpful discussions. Financial support for this
work was provided by the Skaggs Institute for Research and the
National Institutes of Health, USA (Grant AI055475). We are grate-
ful to the NSF for a predoctoral fellowship (to V.C.), Merck for a
postdoctoral fellowship (to R.A.V.), and NIH for a Pathway to Inde-
pendence Award (K99EB011530; to K.P.).
15. (a) Stermitz, F. R.; Williams, D. K. J. Org. Chem. 1973, 38, 2099; (b) Pabuccuoglu,
V.; Hesse, M. Heterocycles 1997, 45, 1751.