Communications
80% yield). Elemental analysis (%) calcd for C18H21N3O9 (423): C
[2] a) L. Zhao, Z. Q. Xu, L. K. Thompson, S. L. Heath, D. O. Miller,
M. Ohba, Angew. Chem. 2000, 112, 3244; Angew. Chem. Int. Ed.
2000, 39, 3114; b) L. A. Zhao, C. J. Matthews, L. K. Thompson,
S. L. Heath, Chem. Commun. 2000, 265; c) J. J. Sokol, A. G. Hee,
J. R. Long, J. Am. Chem. Soc. 2002, 124, 7656; d) J. J. Sokol, M. P.
Shores, J. R. Long, Inorg. Chem. 2002, 41, 3052.
51.06, H 5.00, N 9.95; found: C 49.66, H 4.91, N 9.91; 1H NMR
([D6]DMSO): d = 1.30 (t, 9H; 3 CH3), 4.29 (q, 6H; 3 CH2O), 7.91 (s,
3H; aromatic H), 10.91 ppm (s, 3H; 3 NH); IR (KBr): n˜ = 3277 (NH),
1739, 1695 cmÀ1 (C O).
=
2: The trinuclear CuII complex was obtained by reaction of the
proligand of 1 (2 equiv) with CuII(NO3)2 (3 equiv) in basic aqueous
medium (6 equivof NaOH), and isolated as its sodium salt (95%). [18]
Elemental analysis (%) calcd for C24H6Cu3N6Na6O18(H2O)11.5 (1202):
C 23.98, H 2.43, N 6.99; found: C 23.94, H 2.42, N 6.99; IR (KBr): n˜ =
[3] a) J. Yoo, E. K. Brechin, A. Yamaguchi, M. Nakano, J. C.
Huffman, A. L. Maniero, L. C. Brunel, K. Awaga, H. Ishimoto,
G. Christou, D. N. Hendrickson, Inorg. Chem. 2000, 39, 3615;
b) R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K.
Folting, D. Gatteschi, G. Christou, D. N. Hendrickson, J. Am.
Chem. Soc. 1993, 115, 1804; c) A. L. Barra, P. Debrunner, D.
Gatteschi, C. E. Schulz, R. Sessoli, Europhys. Lett. 1996, 35, 133.
[4] a) R. E. P. Winpenny, Adv. Inorg. Chem. 2001, 52, 1; b) R. E. P.
Winpenny, J. Chem. Soc. Dalton Trans. 2002, 1; c) G. L. Abbati,
A. Cornia, A. C. Fabretti, A. Caneschi, D. Gatteschi, Inorg.
Chem. 1998, 37, 3759; d) A. Caneschi, A. Cornia, S. J. Lippard,
Angew. Chem. 1995, 107, 511; Angew. Chem. Int. Ed. Engl. 1995,
34, 467; e) G. Christou in Magnetism a Supramolecular Function
(Ed.: O. Kahn), Kluwer Academic Publishers, Dordrecht, 1996,
p. 383; f) A. Caneschi, A. Cornia, A. C. Fabretti, S. Foner, D.
Gatteschi, R. Grandi, L. Schenetti, Chem. Eur. J. 1996, 2, 1379;
g) A. Caneschi, D. Gatteschi, J. Laugier, P. Rey, R. Sessoli, C.
Zanchini, J. Am. Chem. Soc. 1988, 110, 2795.
[5] a) Y. Journaux, R. Ruiz, A. Aukauloo, Y. Pei, Mol. Cryst. Liq.
Cryst. 1997, 305, 193; b) T. Mallah, C. Auberger, M. Verdaguer,
P. Veillet, J. Chem. Soc. Chem. Commun. 1995, 61; c) P. Yu, Y.
Journaux, O. Kahn, Inorg. Chem. 1989, 28, 100; d) V. Marvaud,
C. Decroix, A. Scuiller, F. Tuyeras, C. Guyard Duhayon, J.
Vaissermann, M. Marrot, F. Gonnet, M. Verdaguer, Chem. Eur.
J. 2003, 9, 1692.
[6] a) K. Itoh, Pure Appl. Chem. 1978, 50, 1251; b) N. Nakamura, K.
Inoue, H. Iwamura, T. Fujioka, Y. Sawaki, J. Am. Chem. Soc.
1992, 114, 1484.
1654, 1598 cmÀ1 (C O).
=
3: Caution: Perchlorate-containing salts are potentially explosive
and should be handled in very small quantities. The enneacopper(ii)
complex 3 was synthesized in a manner similar to that described in the
literature,[16] with the appropriate 6:1 ratio of [Cu(pmdien)](ClO4)2
and 2 in water. After addition, the mixture was stirred for 10 min, then
the precipitate was collected by filtration, washed with water and
methanol, and dried under vacuum (75%). Crystallization of 3 as
green rods occurred over a few days on slow evaporation of a
saturated aqueous solution. Elemental analysis (%) calcd for
C78H144Cl6Cu9N24O42(H2O)12 (3091): C 30.31, H 5.48, N 10.88, Cl
6.88, Cu 18.50; found: C 29.72, H 5.27, NÀ110.76, Cl 7.15, Cu 17.36; IR
=
(KBr): n˜ = 1607 br (C O), 1088–1145 cm (ClO).
Crystal data for 3: C91H196Cl7Cu10.5N28O67, Mr = 3270.08, trigonal,
¯
space group R3, a = b = 65.137(9) , c = 18.861(4) , V=
69303(20) 3, T= 123(2) K, Z = 18, 1calcd = 1.410 gcmÀ3, m(MoKa) =
1.616 mmÀ1. Data were corrected for Lorentzian and polarization
effects and absorption. 23008 unique reflections, of which 9362 with
I > 2s(I) were taken as as observed. The structure was solved by
direct methods using SHELXS97 and refined by using the full-matrix
least-squares method on F2 using SHELXL97. The hydrogen atoms
were neither found nor calculated. Refinement of 1296 variables with
anisotropic thermal parameters gave R = 0.1290, Rw = 0.3311, and S =
1.065. CCDC-208622 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ,
UK; fax: (+ 44)1223-336-033; or deposit@ccdc.cam.ac.uk).
[7] T. Weyland, K. Costuas, A. Mari, J. F. Halet, C. Lapinte,
Organometallics 1998, 17, 5569.
[8] T. Weyland, K. Costuas, L. Toupet, J. F. Halet, C. Lapinte,
Organometallics 2000, 19, 4228.
The moderate quality of the resolution likely arises from
disorders. Two perchlorate ions (Cl3, Cl4) are disordered, as is a
molecule of complex 3 (Cu10, Cu11, C88, C89, N28, O19, O21) lying
[9] T. Glaser, M. Gerenkamp, R. Frꢀhlich, Angew. Chem. 2002, 114,
3984; Angew. Chem. Int. Ed. 2002, 41, 3823.
[10] I. Fernandez, R. Ruiz, J. Faus, M. Julve, F. Lloret, J. Cano, X.
Ottenwaelder, Y. Journaux, M. C. Munoz, Angew. Chem. 2001,
113, 3129; Angew. Chem. Int. Ed. 2001, 40, 3039.
[11] P. M. VanCalcar, M. M. Olmstead, A. L. Balch, Chem. Commun.
1996, 2597.
[12] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C.
Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349.
[13] K. Itoh, M. Kinoshita, Molecular Magnetism, New Magnetic
Materials, Kodansha Gordon and Breach Science, Tokyo, 2000;
A. S. Ovchinnikov, Theor. Chim. Acta 1978, 47, 259.
[14] a) J. A. McCleverty, M. D. Ward, Acc. Chem. Res. 1998, 31, 842;
b) F. Lloret, G. De Munno, M. Julve, J. Cane, R. Ruiz, A.
Caneschi, Angew. Chem. 1998, 110, 143; Angew. Chem. Int. Ed.
1998, 37, 135.
¯
on the 3 axis and disordered on two positions with occupancy factors
of 0.5. The latter appear as dodecanuclear entities by superposition of
6+
the two enantiomers of a [Cu3[1]2[Cu(pmdien)]6 complex. Even
though a rigorous metrical analysis is precluded by the disorder, all
Cu environments are very similar to those in well-ordered molecules.
Magnetic measurements were carried on a SQUID magneto-
meter on powdered samples in the range 2–300 K. The susceptibility
curves were fitted with an analytical law with the ÀJ convention for
2,[19] and by full Hamiltonian diagnalization for 3 with the Hamil-
tonian h = ÀJF(S2 S4 + S2 S5 + S4 S5)ÀJAF(S2 S1 + S2 S7 + S4 S3 + S4 S8 +
S5 S6 + S5 S9) + gb(S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9)B.
For 2, at the lowest temperature attainable, cMT is
2.5 cm3 KmolÀ1, a value higher than expected for the S = 3/2 ground
state. This is due to weak intermolecular ferromagnetic interactions,
which were taken into account by a Weiss constant q.[19]
[15] R. Costa, A. Garcia, J. Ribas, T. Mallah, Y. Journaux, J. Sletten,
X. Solans, Inorg. Chem. 1993, 32, 3733.
[16] A. Aukauloo, X. Ottenwaelder, R. Ruiz, Y. Journaux, Y. Pei, E.
Riviere, M. C. Munoz, Eur. J. Inorg. Chem. 2000, 951.
[17] The magnetization of 3 at low temperature can also be fitted in
terms of an effective interaction between the doublet ground
states of the trinuclear subunits. The best fit is obtained with a
Jeff value of + 0.9 cmÀ1, which corresponds to a JF value of
+ 8.4 cmÀ1 (JF = 9Jeff).
[18] H. O. Stumpf, Y. Pei, O. Kahn, J. Sletten, J.-P. Renard, J. Am.
Chem. Soc. 1993, 115, 6738.
[19] O. Kahn, Molecular Magnetism, VCH, New York, 1993.
Received: September 12, 2003 [Z52851]
Keywords: copper · cyclophanes · magnetic properties ·
.
metallacycles · N,O ligands · nonanuclear complex
[1] a) S. R. Seidel, P. J. Stang, Acc. Chem. Res. 2002, 35, 972; b) S.
Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853;
c) M. Fujita, Chem. Soc. Rev. 1998, 27, 417; d) D. L. Caulder,
K. N. Raymond, Acc. Chem. Res. 1999, 32, 975.
852
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 850 –852