F. W. A. Barros et al. / Bioorg. Med. Chem. 20 (2012) 3533–3539
3539
4. Karolak-Wojciechowska, J.; Mrozek, A.; Amiel, P.; Brouant, P.; Barbe, J. Acta
Crystallogr., Sect. C 1996, C52, 2939.
5. Hartwell, J. L.; Shear, M. J.; Johnson, J. M.; Kornberg, S. R. L. Cancer Res. 1946, 6,
489.
6. Sondhi, S. M.; Bhattacharjee, G.; Jameel, R. K.; Shukla, R.; Raghubir, R.; Lozach,
O.; Meijer, L. Cent. Eur. J. Chem. 2004, 2, 1.
7. Belmont, P.; Bosson, J.; Godet, T.; Tiano, M. Anticancer Agents Med. Chem. 2007,
7, 139.
performed in solution. Due to the insolubility of acridines in aqu-
eous solution, it was necessary to adapt a methodology to analyse
them. This one consisted of incorporating acridine-thiazolidine
derivatives in carbon paste.46 Activated graphite (45 mg) was
mixed with 1 mL of an ethanol solution of the acridine-thiazoli-
dine samples (10À4 mol LÀ1
) and stirred for approximately
8. Pigatto, M. C.; Lima, M. C. A.; Galdino, S. L.; Pitta, I. R.; Vessecchi, R.; Assis, M. D.;
Santos, J. S.; Costa, T. D.; Lopes, N. P. Eur. J. Med. Chem. 2011, 46, 4245.
9. Goodell, J. R.; Ougolkov, A. V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D. D.;
Ferguson, D. M. J. Med Chem. 2008, 51, 179.
10. Rogojina, A. T.; Nitiss, J. L. J. Biol. Chem. 2008, 283, 29239.
11. Oppegard, L. M.; Ougolkov, A. V.; Luchini, D. N.; Schoon, R. A.; Goodell, J. R.;
Kaur, H.; Billadeau, D. D.; Ferguson, D. M.; Hiasa, H. Eur. J. Pharmacol. 2009, 602,
223.
12. Kleideiter, E.; Piotrowska, K.; Klotz, U. Methods Mol. Biol. 2007, 405, 167.
13. Gunaratnam, M.; Greciano, O.; Martins, C.; Reszka, A. P.; Schultes, C. M.;
Morjani, H.; Riou, J. F.; Neidle, S. Biochem. Pharmacol. 2007, 74, 679.
14. Castillo-González, D.; Cabrera-Pérez, M. A.; Pérez-González, M.; Helguera, A.
M.; Durán-Martínez, A. Eur. J. Med. Chem. 2009, 44, 4826.
15. Guo, C.; Gasparian, A. V.; Zhuang, Z.; Bosykh, D. A.; Komar, A. A.; Gudkov, A. V.;
Gurova, K. V. Oncogene 2009, 28, 1151.
16. Sánchez, I.; Reches, R.; Caignard, D. H.; Renard, P.; Pujol, M. D. Eur. J. Med. Chem.
2006, 41, 340.
17. Ban, J. O.; Kwak, D. H.; Oh, J. H.; Park, E. J.; Cho, M. C.; Song, H. S.; Song, M. J.;
Han, S. B.; Moon, D. C.; Kang, K. W.; Hong, J. T. Chem. Biol. Interact. 2010, 188, 75.
18. El-Gaby, M. S. A.; Ismail, Z. H.; Abdel-Gawad, S. M.; Aly, H. M.; Ghorab, M. M.
Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 2645.
19. Beharry, Z.; Zemskova, M.; Mahajan, S.; Zhang, F.; Ma, J.; Xia, Z.; Lilly, M.;
Smith, C. D.; Kraft, A. S. Mol. Cancer Ther. 2009, 8, 1473.
20. Chandrappa, S.; Benaka, P. S. B.; Vinaya, K.; Ananda, K. C. S.; Thimmegowda, N.
R.; Rangappa, K. S. Invest. New Drugs 2008, 26, 437.
20 min until the solvent was completely evaporated. To ensure
complete evaporation, the mixture was subjected to a nitrogen
atmosphere. Next, 20 lL of commercial mineral oil was added
and mixed strongly to achieve a uniform texture. In this case, a
blank (control) was also produced by the addition of ethanol only
(no substance) to graphite and a subsequent mixture with miner-
al oil.
4.3.1.3. Preparation of ssDNA and its interaction with acridine-
thiazolidine derivatives.
Single-stranded DNA (ssDNA) was
prepared by dissolving 3.0 mg of dsDNA in 1.0 mL of hydrochloric
acid (1 M) and heating for 1 h until complete dissolution. This
treatment was followed by neutralising the solution with 1.0 mL
of sodium hydroxide (1 M) and 9 mL of acetate buffer was then
added.28,29
Freshly prepared ssDNA solution was added to the cell, and sin-
gle-scan DPV experiments were conducted in the range of 0 to
+1.4 V versus Ag|AgCl, ClÀ (0.1 M). Two peaks corresponding to
the oxidation of the guanosine and adenosine bases appeared at
potentials of +0.815 and +1.131 V, respectively. To ensure reprodu-
cibility, this assay format was repeated at least three times, and the
oxidation current and potential of the bases were very similar (rsd
of 5%). After this process, the carbon paste electrode modified with
acridine-thiazolidine derivatives was inserted into the ssDNA
solution, and the DPV experiment was performed. An unmodified
carbon paste electrode was also employed in the DPV experiments
involving the ssDNA solution and was used for comparison.
21. Li, W.; Lu, Y.; Wang, Z.; Dalton, J. T.; Miller, D. D. Bioorg. Med. Chem. Lett. 2007,
17, 4113.
22. Shiau, C. W.; Yang, C. C.; Kulp, S. K.; Chen, K. F.; Chen, C. S.; Huang, J. W.; Chen,
C. S. Cancer Res. 2005, 65, 1561.
23. Ip, M. M.; Sylvester, P. W.; Schenkel, L. Cancer Res. 1986, 46, 1735.
24. Han, S.; Roman, J. Anti-Cancer Drugs 2007, 18, 237.
25. Barros, C. D.; Amato, A. A.; de Oliveira, T. B.; Iannini, K. B.; Silva, A. L.; Silva, T.
G.; Leite, E. S.; Hernandes, M. Z.; Alves de Lima, M. do C.; Galdino, S. L.; Neves, F.
de A.; Pitta, R. Bioorg. Med. Chem. 2010, 18, 3805.
27. Shiau, C.-W.; Yang, C.-C.; Kulp, S. K. Cancer Res. 2005, 65, 1561–1569.
28. Diculescu, V. C.; Paquim, A. M. C.; Brett, A. M. O. Sensors 2005, 5, 377.
29. De Abreu, F. C.; De Paula, F. S.; Ferreira, D. C. M.; Nascimento, V. B.; Santos, A.
M. C.; Santoro, M. M.; Salas, C. E.; Lopes, J. C. D.; Goulart, M. O. F. Sensors 2008,
8, 1519.
4.3.1.4. Statistical analysis.
The IC50 values and their 95%
confidence intervals (CI 95%) were obtained by nonlinear regres-
sion using the GRAPHPAD program (Intuitive Software for Science,
San Diego, CA, USA).
30. Hillard, E. A.; De Abreu, F. C.; Ferreira, D. C. M.; Jaouen, G.; Goulart, M. O. F.;
Amatore, C. Chem. Commun. 2008, 2612.
31. Rauf, S.; Gooding, J. J.; Akhtar, K.; Ghauri, M. A.; Rahman, M.; Anwar, M. A.;
Khalid, A. M. J. Pharm. Biomed. Anal. 2005, 37, 205.
Acknowledgments
32. Tsuge, O.; Nishinohara, M.; Tashiro, M. B. Chem. Soc. Jpn. 1963, 36, 1477.
33. Mosher, M. D.; Natale, N. R. J. Heterocycl. Chem. 1995, 32, 779.
34. Tan, F.; Ang, K. P.; Fong, Y. F. J. Chem. Soc., Perkin Trans. II 1941, 1986, 12.
35. De Simone, C. A.; Zukerman-Schpector, J.; Pereira, M. A.; Luu-Duc, C.; Pitta, I. R.;
Galdino, S. L.; Amorim, E. L. C. Acta Cryst. 1995, C51, 2620.
36. Karabatsos, G. J.; Orzech, C. E. J. Am. Chem. Soc. 1965, 87, 560.
37. Mosmann, T. J. Immunol. Methods 1983, 316, 55.
38. Thale, Z.; Johnson, T.; Tenney, K.; Wenzel, P. J.; Lobkovsky, E.; Clardy, J.; Media,
J.; Pietraszkiewicz, H.; Valeriote, F. A.; Crews, P. J. Org. Chem. 2002, 67, 9384.
39. Kolokythas, G.; Pouli, N.; Marakos, P.; Pratsinis, H.; Kletsas, D. Eur. J. Med. Chem.
2006, 41, 71.
This study was supported by the Brazilian National Research
Council and National Institute of Science and Technology for
Pharmaceutical Innovation (CNPq/RENORBIO/INCT_IF), as well as
the INCT-Bioanalítica. The authors wish to thank Professor José
Dias de Souza Filho (Universidade Federal de Minas Gerais, Belo
Horizonte, MG, Brazil) for the obtention of the 13C NMR.
40. Antonini, I. Curr. Med. Chem. 2002, 9, 1701.
Supplementary data
ˇ
´
41. Janovec, L.; Kozurková, M.; Sabolová, D.; Ungvarsky, J.; Paulíková, H.; Plšíková,
J.; Vantová, Z.; Imrich, J. Bioorg. Med. Chem. 2011, 19, 1790.
Supplementary data associated with this article can be found, in
42. Silva, T. G.; Barbosa, F. S. V.; Brandão, S. S. F.; Lima, M. C. A.; Galdino, S. L.; Pitta,
I. R.; Barbe, J. Heter. Comm. 2001, 7, 523.
43. Mourão, R. H.; Silva, T. G.; Soares, A. L.; Vieira, E. S.; Santos, J. N.; Lima, M. C.;
Lima, V. L.; Galdino, S. L.; Barbe, J.; Pitta, I. R. Eur. J. Med. Chem. 2005, 40, 1129.
44. Ahmed, S. A.; Gogal, R. M.; Walsh, J. E. J. Immunol. Meth. 1994, 170, 211.
45. Costa-Lotufo, L. V.; Cunha, G. M. A.; Farias, P. A. M.; Viana, G. S. B.; Cunha, K. M.
A.; Pessoa, C.; Moraes, M. O.; Silveira, E. R.; Gramosa, N. V.; Rao, V. S. N. Toxicon
2002, 40, 1231.
References and notes
1. Csuk, R.; Barthel, A.; Brezesinski, T.; Raschke, C. Bioorg. Med. Chem. Lett. 2004,
14, 4983.
46. Lima, P. R.; Miranda, P. R. B.; Oliveira, A. B.; Goulart, M. O. F.; Kubota, L. T.
Electroanalytical 2009, 21, 2311.
2. Aly El-Moghazy, S. M.; Mikhael, A. N.; Eissa, A. A. H.; Ebeid, M. Y. Egypt J. Pharm.
Sci. 1994, 34, 401.
3. Dollinger, S.; Loeber, S.; Klingenstein, S.; Korth, C.; Gmeiner, P. A. . J. Med. Chem.
2006, 49, 6591.