Scheme 4
Scheme 5
and conversion of the resulting diols to their di-tert-
butylsilylene ethers (Scheme 6).23 Analysis of these diaster-
BF3‚SMe2, Et2AlCl, TiCl4, SnCl4, and MgBr2‚OEt2. Evans
reported good facial selectivities in aldol reactions with
â-heterosubstituted aldehydes under similar nonchelation
control conditions using BF3‚OEt2 as the Lewis acid.20
The synthesis continued with methylation of the C(7)
hydroxyl group of the major 2,3-anti-3,5-anti-aldol product
17, using Meerwein’s salt under conditions described by
Evans (Me3OBF4, proton sponge, 90%) (Scheme 5).21 Vasella
ring cleavage by spontaneous â-elimination of the alkyl zinc
generated in situ by reduction of the alkyl bromide with
zinc-copper couple provided acyclic diol 19.22 At this point
we expected that conditions could be established such that
equilibrium would favor the hemiketal 20 (or the methyl
ketal) over ketone 19, thereby providing a locked cyclic
structure that would greatly facilitate stereochemical assign-
ment by NOE analysis. However, reliably obtaining 20
proved elusive.
Scheme 6
To ascertain the 3,5-anti or syn stereochemistry, both aldol
diastereomers were carried forward by Vasella ring cleavage
(10) (a) Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1984, 753-756. (b)
Evans, D. A.; Gage, J. R.; Leighton, J. L.; Kim, A. S. J. Org. Chem. 1992,
57, 1961-1963. (c) Andrus, M. B.; Soma Sekhar, B. B. V.; Meredith, E.
L.; Dalley, N. K. Org. Lett. 2000, 2, 3035-3037. (d) Crimmins, M. T.;
McDougall, P. J. Org. Lett. 2003, 5, 591-594. (e) Roush, W. R.; Pfeifer,
L. A. Org. Lett. 2000, 2, 859-862.
(11) For proline-catalyzed R-hydroxy ketone aldols, see: List, B.; Lerner,
R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395-2396.
(12) (a) Paterson, I.; Tillyer, R. D. J. Org. Chem. 1993, 58, 4182-1484.
(b) Brimble, M. A.; Nairn, M. R.; Park, J. Org. Lett. 1999, 1, 1459-1462.
(c) Andrus, M. B.; Soma Sekhar, B. B. V.; Meredith, E. L.; Dalley, N. K.
Org. Lett. 2000, 2, 3035-3037.
eomers by NOE spectroscopy clearly showed a strong
enhancement between the quasi-1,3-diaxial methine hydro-
gens in the syn diastereomer 22, and similar NOEs were
absent in 21.24 The 2,3-anti stereochemistry is based on
comparison of coupling constants of the other three diaster-
eomers and literature precedence with tert-butyl ethyl
ketones.13,19,25
(13) Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1-200.
(14) (a) Bolitt, V.; Mioskowski, C.; Lee, S.-G.; Falck, J. R. J. Org. Chem.
1990, 55, 5812-5813. (b) France, C. J.; McFarlane, I. M.; Newton, C. G.;
Pitchen, P.; Webster, M. Tetrahedron Lett. 1993, 34, 1635-1638.
(15) (a) Hanessian, S.; Plessas, N. R. J. Org. Chem. 1969, 34, 1035-
1044. (b) Hullar, T. L.; Siskin, S. B. J. Org. Chem. 1970, 35, 225-228.
(16) Fisher, M. J.; Myers, C. D.; Joglar, J.; Chen, S.-H.; Danishefsky,
S. J. J. Org. Chem. 1991, 56, 5826-5834.
(17) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104,
4976-4978.
With stereochemistry established, we decided to proceed
with the C(10) ketone intact (Scheme 7). The C(5) hydroxyl
(18) Imai, T.; Nishida, S. Synthesis 1993, 395-399.
(19) These results along with additional stereochemical proofs will be
described elsewhere.
(20) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem.
Soc. 1996, 118, 4322-4343.
(23) Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 4871-
4874.
(24) Yu, M.; Pagenkopf, B. L. J. Org. Chem. 2002, 67, 4553-4558.
(25) Heathcock, C. H.; Hug, K. T.; Flippin, L. A. Tetrahedron Lett. 1984,
25, 5973-5976.
(21) Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. Tetrahedron
Lett. 1994, 35, 7171-7172.
(22) Bernet, B.; Vasella, A. HelV. Chem. Acta 1979, 62, 1990-2016.
Org. Lett., Vol. 6, No. 5, 2004
665