Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC09926F
COMMUNICATION
Journal Name
3. (a) Y. Hatanaka and T. Hiyama, Synlett, 1991, 845; (b) K. A. Horn,
Chem. Rev., 1995, 95, 1317; (c) Z. Qureshi, C. Toker and M.
Lautens, Synthesis, 2017, 49, 1.
4. (a) S. Lulinski and J. Serwatowski, J. Org. Chem., 2003, 68, 9384;
(b) M. Schlosser and C. Heiss, Eur. J. Org. Chem., 2003, 4618; (c)
M. Oestreich, G. Auer and M. Keller, Eur. J. Org. Chem., 2004,
184.
estimated that on average 0.03 wt% of Pd and 0.08 wt% of Pt were
lost upon each cycle. On the other hand, in the cases after 15
recycles using the monometallic catalysts, Pd−Fe3O4, Pt−Fe3O4 NPs
were shown to be highly aggregated and a large degree of metal
loss was confirmed (Fig. S23-26, Table S2 and S3). The remaining Pd
and Pt contents after 15 times recycles of Pd−Fe3O4 and Pt−Fe3O4
catalysts were greatly reduced, i.e. 3.44 wt% from 7.47 wt% (fresh)
and 2.51 wt% from 10.76 wt% (fresh), respectively. In case of
Pd−Fe3O4 and Pt−Fe3O4 recycle test, on average 0.26 wt% of Pd and
0.55 wt% of Pt leached out from each run. It is surprising to note
that Pd−Pt−Fe3O4 NPs showed considerably less liberation of the
transition metal contents compared to the monometallic catalysts.
On the other hand, XRD peaks of spent nanocatalysts were not
precisely identified due to the leaching of a transition metal. (Fig.
S29). The Pd−Pt alloy has very excellent crystallinity as shown BF-
STEM image of Pd−Pt−Fe3O4 (Fig. S30). We may think that Pd−Pt
alloy is structurally and morphologically very stable, its durability in
catalytic reactions is also outstanding. Thus, the bimetallic
Pd−Pt−Fe3O4 exhibits excellent synergistic effect in both reactivity
of silylation reactions and catalyst durability. Based on previous
report6a and our experimental results, we proposed the reaction
mechanism (Fig S31).
5. Z. Xu, W.-S. Huang, J. Zhang and L.-W. Xu, Syntheis, 2015, 47,
3645.
6. (a) Y. Yamanoi, J. Org. Chem., 2005, 70, 9607; (b) E. McNeill, T.
E. Barder and S. L. Buchwald, Org. Lett., 2007, 9, 3785; (c) Y.
Kurihara, M. Nishikawa, Y. Yamanoi and H. Nishihara, Chem.
Commun., 2012, 48, 11564; (d) A. Sinai, A. Mészáros, A. Balogh,
M. Zwillinger and Z. Novák, Synthesis, 2017, 49, 2374.
7. (a) M. Murata, M. Ishikura, M. Nagata, S. Watanabe and Y.
Masuda, Org. Lett., 2002, 4, 1843; (b) Y. Yamanoi and H.
Nishihara, J. Org. Chem., 2008, 73, 6671; (c) H. Fang, L. Guo, Y.
Zhang, W. Yao and Z. Huang, Org. Lett., 2016, 18, 5624.
8. A. Hamze, O. Provot, M. Alami, J.-D. Brion, Org. Lett., 2006, 8,
931.
9. R. Boukherroub, C. Chatgilialoglu and G. Manuel,
Organometallics, 1996, 15, 1508.
10. Zarate and R. Martin, J. Am. Chem. Soc., 2014, 136, 2236.
11. X. Pu, J. Hu, Y. Zhao and Z. Shi, ACS Catal., 2016, 6, 6692.
12. (a) M. Tobisu, R. Nakamura, Y. Kita and N. Chatani, Bull. Korean
Chem. Soc., 2010, 31, 582; (b) M. Tobisu, Y. Kita, Y. Ano and N.
Chatani, J. Am. Chem. Soc., 2008, 130, 15982.
13. (a) C. Cheng and J. F. Hartwig, Science, 2014, 343, 853; (b) P. I.
Djurovich, A. R. Dolich and D. H. Berry, J. Chem. Soc. Chem.
Commun., 1994, 1897.
14. (a) F. Kakiuchi, M. Matsumoto, K. Tsuchiya, K. Igi, T. Hayamizu,
N. Chatani and S. Murai, J. Organomet. Chem., 2003, 686, 134;
(b) H. Ihara and M. Suginome, J. Am. Chem. Soc., 2009, 131,
7502.
15. (a) N. Tsukada and J. F. Hartwig, J. Am. Chem. Soc., 2005, 127,
5022; (b) M. Murata, N. Fukuyama, J.-I. Wada, S. Watanabe and
Y. Masuda, Chem. Lett., 2007, 36, 910.
Conclusions
In summary, a recyclable bimetallic catalytic system for the
silylation of aryl halides has been developed. The reaction with aryl
iodides (or bromides) and hydrosilane in the presence of i-Pr2EtN
and Pd−Pt−Fe3O4 catalyst provided the corresponding aryl silanes in
good to moderate yields. In addition, this catalytic system showed
good tolerance toward the ester, ketone, aldehyde, nitro, and
nitrile functional groups. This is the first report of a recyclable
catalytic system for the arylsilylation reaction. The bimetallic
Pd
shows better activity and durability compared to the monometallic
Pd Fe3O4 and Pt Fe3O4 catalysts. The catalyst was recycled up to
−Pt−Fe3O4 catalyst can be readily recovered and reused, and
16. (a) T. Ishiyama, K. Sato, Y. Nishio and N. Miyaura, Angew. Chem.
Int. Ed., 2003, 42, 5346; (b) G. Choi, H. Tsurugi and K. Mashima,
J. Am. Chem. Soc., 2013, 135, 13149; (c) E. M. Simmons and J. F.
Hartwig, Nature, 2012, 483, 70
−
−
twenty times and the product yields were found to be consistently
good.
17. (a) L. Wang, H. Zhu, S. Guo, J. Cheng and J.-T. Yu, Chem.
Commun., 2014, 50, 10864; (b) M. Sasaki and Y. Kondo, Org.
Lett., 2015, 17, 848; (c) W.-B. Liu, D. P. Schuman, Y.-F. Yang, A.
A. Toutov, Y. Liang, H. F. T. Klare, N. Nesnas, M. Oestreich, D. G.
Blackmond, S. C. Virgil, S. Banerjee, R. N. Zare, R. H. Grubbs, K.
N. Houk and B. M. Stolz, J. Am. Chem. Soc., 2017, 139, 6867; (d)
A. A. Toutov, W.-B. Liu, K. N. Betz, A. Fedorov, B. M. Stoltz and
R. H. Grubbs, Nature, 2015, 518, 80.
18. (a) Y. Misumi, Y. Ishii and M. Hidai, Organometallics, 1995, 14,
1770; (b) M. Sankar, N. Dimitratos, P. J. MIedziak, P. P. Wells, C.
J. Kiely and G. J. Hutchings, Chem. Soc. Rev., 2012, 41, 8099; (c)
A. E. Allen and D. W. C. MacMillan, Chem. Sci., 2012, 3, 633; (d)
S. Krautwald, D. Sarlah, M. A. Schafroth and E. M. Carreira,
Science, 2013, 340, 1065; (e) H. Miura, K. Endo, R. Ogawa and T.
Shishido, ACS Catal., 2017, 7, 1543.
Acknowledgements
This research was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-
2015R1A4A1041036) and the Nano Material Development Program
(NRF-2012M3A7B4049655) through the NRF funded by the Ministry
of Education, Science and Technology. The spectral data were
obtained from the Gwangju center and HRMS data from the Daegu
center of Korea Basic Science Institute.
Notes and references
1. (a) W. Bains and R. Tacke, Curr. Opin. Drug Discovery Dev., 2003,
6, 526; (b) X.-M. Liu, C. He, J. Haung and J. Xu, Chem. Mater.,
2005, 17, 434. (c) Y. You, C.-G. An, J.-J. Kim and S. Y. Park, J. Org.
Chem., 2007, 72, 6241; (d) D. Sun, Z. Ren, M. F. Bryce and S. Yan,
J. Mater. Chem. C, 2015, 3, 9496.
2. (a) X. Ren, J. Li, R. Holmes, P. Djurovich, S. Forrest and M.
Thompson, Chem. Mater., 2004, 16, 4743; (b) X.-M. Liu, C. He, J.
Huang and J. Xu, Chem. Mater., 2005, 17, 434.
19. S. Byun, Y. Song and B. M. Kim, ACS Appl. Mater. Interfaces,
2016, 8, 14637.
20. (a) H. Zhang, M. Jin and Y. Xia, Chem. Soc. Rev., 2012, 41, 8035-
8049; (b) F.-M. Li, X.-Q. Gao, S.-N. Li, Y. Chen and J.-M. Lee, NPG
Asia Materials, 2015, 7, 219-225.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins