LETTER
Ring Opening of Aziridines with Thioamides
2047
NTs
S
Ts
N
ZnCl2
CH2Cl2, 40 °C
N
O
+
N
O
Ph
2a
3p, 70%
1n
Scheme 4
(3) Chen, S.; Xu, Y.; Wan, X. Org. Lett. 2011, 13, 6152.
action of a terminal alkyne, an arylsulfonyl azide, and an
alcohol is treated with different amines in the presence of
catalytic amounts of NaCN to produce the corresponding
N-arylsulfonyl amidines in two steps.4b Another approach
profits from the reaction of enamines and sulfonyl azides
to attain the desired product.18 Both of these methods are
very effective and useful, but use potentially explosive ar-
ylsulfony azide or toxic NaCN catalyst and require multi-
ple steps; these are drawbacks compared to our protocol.
(4) (a) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127,
2038. (b) Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S.
Org. Lett. 2006, 8, 1347. (c) Chang, S.; Lee, M. J.; Jung, D.
Y.; Yoo, E. J.; Cho, S. H.; Han, S. K. J. Am. Soc. Chem.
2006, 128, 12366. (d) Kim, J. Y.; Kim, S. H.; Chang, S.
Tetrahedron Lett. 2008, 49, 1745. (e) Yoo, E. J.; Chang, S.
Org. Lett. 2008, 10, 1163.
(5) (a) Whiting, M.; Fokin, V. V. Angew. Chem. Int. Ed. 2006,
45, 3157. (b) Yoo, E. J.; Ahlquist, M.; Bae, I.; Sharpless, K.
B.; Fokin, V. V.; Chang, S. J. Org. Chem. 2008, 73, 5520.
(6) (a) Shang, Y.; He, X.; Hu, J.; Wu, J.; Zhang, M.; Yu, S.;
Zhang, Q. Adv. Synth. Catal. 2009, 351, 2709. (b) Mandal,
S.; Gauniyal, H. M.; Pramanik, K.; Mukhopadhyay, B. J.
Org. Chem. 2007, 72, 9753. (c) Xu, X.; Cheng, D.; Li, J.;
Guo, H.; Yan, J. Org. Lett. 2007, 9, 1585.
(7) (a) Wang, S.; Wang, Z.; Zheng, X. Chem. Commun. 2009,
7372. (b) Xu, X.; Li, X.; Ma, L.; Ye, N.; Weng, B. J. Am.
Chem. Soc. 2008, 130, 14048. (c) Liu, N.; Tang, B. Y.;
Chen, Y.; He, L. Eur. J. Org. Chem. 2009, 2059. (d) Xu, X.;
Ge, Z.; Cheng, D.; Ma, L.; Lu, C.; Zhang, Q.; Yao, N.; Li, X.
Org. Lett. 2010, 12, 897. (e) Zhang, L.; Su, J. H.; Wang, S.;
Wan, C.; Zha, Z.; Du, J.; Wang, Z. Chem. Commun. 2011,
47, 5488.
To demonstrate the versatility of the presented method,
the reaction was further extended to a different thioamide
having a methylene moiety (Scheme 4). Hence, thioamide
1n as an example was chosen and reacted with 2-phenyl-
1-tosylaziridine (2a) at the same reaction conditions. As
expected the bulky thioamide reacted efficiently and pro-
vided 3p in a good yield of 70% (Scheme 4).
Fortunately, all of starting thioamides used in the present-
ed method could be readily accessible by the Willgeroadt–
Kindler reaction of their corresponding aldehyde or ace-
tophenone derivatives.19 The aziridine derivatives were
also simply prepared by the known methods.20
(8) Gao, T.; Zhao, M.; Meng, X.; Li, C.; Chen, B. Synlett 2011,
1281.
In conclusion, we have developed a simple procedure for
the imidation of thioamides catalyzed by simple zinc salts
leading to the corresponding N-arylsulfonyl amidines by
utilizing N-arylsulfonyl aziridines as the nitrogen source.
The method is applicable to a broad range of thioamides
and is performed under mild conditions, without need for
an expensive catalyst and gives good yields of product.
Furthermore the thioamides and nitrogen precursors are
readily prepared.
(9) (a) Jacobsen, C. B.; Jørgensen, K. A. Org. Biomol. Chem.
2008, 6, 3467. (b) Nenajdenko, V. G.; Karpov, A. S.;
Balenkova, E. S. Tetrahedron: Asymmetry 2001, 12, 2517.
(10) (a) Hu, X. E. Tetrahedron 2004, 60, 2701. (b) D’hooghe,
M.; Van Speybroeck, V.; Waroquier, M.; De Kimpe, N.
Chem. Commun. 2006, 1554. (c) Lu, P. Tetrahedron 2010,
66, 2549.
(11) (a) Wu, J.; Sun, X.; Sum, W. Org. Biomol. Chem. 2006, 4,
4231. (b) Ghorai, M. G.; Das, K.; Shukla, D. J. Org. Chem.
2007, 72, 5859. (c) Stanković, S.; D’hooghe, M.; Catak, S.;
Eum, H.; Waroquier, M.; Speybroeck, V. V.; Kimpe, N. D.;
Ha, H. Chem. Soc. Rev. 2012, 41, 643. (d) Chandrasekhar,
S.; Narsihmulu, C.; Shameem Sultana, S. Tetrahedron Lett.
2002, 43, 7361.
Acknowledgment
We are grateful to the University of Isfahan Research Council for
financial support of this work.
(12) Alagiri, K.; Prabhu, K. R. Chem. Eur. J. 2011, 17, 6922.
(13) Wu, J. Y.; Luo, Z. B.; Dai, L. X.; Hou, X. L. J. Org. Chem.
2008, 73, 9137.
Supporting Information for this article is available online
(14) Gopinath, P.; Debasree, C.; Vidyarini, R. S.;
Chandrasekaran, S. Tetrahedron 2010, 66, 7001.
(15) Jagodzinski, T. S. Chem. Rev. 2003, 103, 197.
(16) Zali-Boeini, H.; Mobin, M. Synlett 2010, 2861.
(17) (a) Zali-Boeini, H.; Eshghi Kashan, M. Green Chem. 2009,
11, 1987. (b) Zali-Boeini, H.; Zali, A. Synth. Commun. 2011,
41, 2421. (c) Zali-Boeini, H.; Khajeh, A. Bull. Korean
Chem. Soc. 2011, 32, 1201.
(18) Gao, T.; Zhao, M.; Meng, X.; Li, C.; Chen, B. Synlett 2011,
1281.
(19) Zbruyev, O. I.; Stiasni, N.; Kappe, C. O. J. Comb. Chem.
2003, 5, 145.
at
10.1055/s-00000083.SunpfgIpi
o
o
nr
i
References and Notes
(1) (a) Sienkiewich, P.; Bielawski, K.; Bielawska, A.; Palka, J.
Environ. Toxicol. Pharmacol. 2005, 20, 118. (b) Greenhill,
J. V.; Lue, P. Prog. Med. Chem. 1993, 30, 203.
(2) (a) The Chemistry of Amidines and Imidates; Patai, S.;
Rappoport, Z., Eds.; Wiley: New York, 1991. (b) Lee, M.
Y.; Kim, M. H.; Kim, J.; Kim, S. H.; Kim, B. T.; Jeong, I. H.;
Chang, S.; Kim, S. H.; Chang, S. Y. Bioorg. Med. Chem.
Lett. 2010, 20, 541.
(20) Daisuke, K.; Satoshi, M.; Mitsuo, K. J. Chem. Soc., Perkin
Trans. 1 2001, 3186.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 2044–2048