Angewandte
Chemie
(Ed.: P. J. Scheuer), Springer, Berlin, 1987, pp. 31 – 60; c) D. J.
Faulkner, Nat. Prod. Rep. 1984, 1, 251 – 280; d) T. E. Thompson,
J. Mar. Biol. Assoc. U. K. 1960, 39, 115 – 122.
[2] For selected natural products isolated from nudibranchs, see:
a) B. J. Burreson, P. J. Scheuer, J. Finer, J. Clardy, J. Am. Chem.
Soc. 1975, 97, 4763 – 4764; b) E. J. Dumbei, E. D. de Silva, R. J.
Andersen, M. I. Choudhary, J. Clardy, J. Am. Chem. Soc. 1989,
111, 2712 – 2713; c) B. Carte, D. J. Faulkner, J. Chem. Ecol. 1986,
12, 795 – 804; d) G. Cimino, S. De Rosa, S. De Stefano, G.
Sodano, G. Villani, Science 1983, 219, 1237 – 1238; e) M. Tischler,
R. J. Andersen, Tetrahedron Lett. 1989, 30, 5717 – 5720.
[3] J. E. Hochlowski, D. J. Faulkner, G. K. Matsumoto, J. Clardy, J.
Org. Chem. 1983, 48, 1141 – 1142.
[4] a) B. Sullivan, D. J. Faulkner, J. Org. Chem. 1984, 49, 3204 – 3206;
b) A. Rudi, Y. Kashman, Tetrahedron 1990, 46, 4019 – 4022.
[5] a) S. C. Bobzin, D. J. Faulkner, J. Org. Chem. 1989, 54, 5727 –
5731; b) T. F. Molinski, D. J. Faulkner, J. Org. Chem. 1986, 51,
4564 – 4567.
[6] For recent biological data on related metabolites, see: M. Arno,
L. Betancur-Galvis, M. A. Gonzalez, J. Sierra, R. J. Zaragoza,
Bioorg. Med. Chem. 2003, 11, 3171 – 3177.
[7] For synthetic studies toward 1, see: a) C. Kim, R. Hoang, E. A.
Theodorakis, Org. Lett. 1999, 1, 1295 – 1297; b) R. L. Casaubon,
M. L. Snapper, 224th ACS Natl. Meeting, Boston, USA, 2002.
[8] For selected syntheses of related metabolites, see: a) A. D.
Lebsack, L. E. Overman, R. J. Valentekovich, J. Am. Chem. Soc.
2001, 123, 4851 – 4852; b) A. Abad, M. Arno, M. L. Marin, R. J.
Zaragoza, J. Org. Chem. 1992, 57, 6861 – 6864; c) M. Arno, M. A.
Gonzalez, R. J. Zaragoza, J. Org. Chem. 2003, 68, 1242 – 1251.
[9] For a catalytic asymmetric Diels–Alder approach to a related
tricyclic g-lactone–g-lactol ring system, see: E. J. Corey, M. A.
Letavic, J. Am. Chem. Soc. 1995, 117, 9616 – 9617.
[10] For selected reports on the Baeyer–Villiger reaction, see: a) M.
Hudlicky in Oxidations in Organic Chemistry, American Chem-
ical Society, Washington, DC, 1990, pp. 186 – 195; b) K. Mislow,
J. Brenner, J. Am. Chem. Soc. 1953, 75, 2318 – 2322; c) R. M.
Goodman, Y. Kishi, J. Am. Chem. Soc. 1998, 120, 9392 – 9393.
[11] a) U. Eder, G. Sauer, R. Wiechert, 1971, 83, 492 – 493; b) Z. G.
Hajos, D. R. Parrish, (Hoffmann-La Roche, Inc.), US 70–96597,
1976 [Chem. Abstr. 1977, 86, 89274]; c) H. Hagiwara, J. Uda, J.
Org. Chem. 1988, 53, 2308 – 2311; d) H. Hagiwara, H. Sakai, T.
Uchiyama, Y. Ito, N. Morita, T. Hoshi, T. Suzuki, M. Ando, J.
Chem. Soc. Perkin Trans. 1 2002, 583 – 591.
[12] All new compounds exhibited satisfactory spectroscopic and
analytical data (see Supporting Information). Yields refer to
spectroscopically and chromatographically homogeneous mate-
rials.
[13] All hydrogenation conditions produced a mixture of cis (major
product) and trans bicycles, which were difficult to separate by
using standard chromatographic techniques.
[14] For an alternative synthetic route to 13, see: a) L. Paquette, H.-
L. Wang, Tetrahedron Lett. 1995, 36, 6005 – 6008; b) L. Paquette,
H.-L. Wang, J. Org. Chem. 1996, 61, 5352 – 5357.
[15] CCDC-216393 (14) and CCDC-216394 (6) contain the supple-
mentary crystallographic data for this paper. These data can be
ving.html (or from the Cambridge Crystallographic Data Centre,
12, Union Road, Cambridge CB21EZ, UK; fax: (+ 44)1223-
336-033; or deposit@ccdc.cam.ac.uk).
Scheme 5. Reagents and conditions: a) 5 (1.5 equiv), tBuLi (3.0 equiv),
THF, ꢀ78!ꢀ408C, 0.5 h, then 6, THF, ꢀ788C, 1 h, 75%; b) Dess–
Martin periodinane (8.0 equiv), CH2Cl2, 258C, 10 h, 95%; c) 10% Pd/
C, H2, MeOH, 258C, 10 h, 85%; d) MeLi (5.0 equiv), THF/DME (1:3),
08C, 0.5 h, 75%; e) SOCl2 (10.0 equiv), pyridine (20.0 equiv), CH2Cl2,
08C, 0.5 h, 85%; f) TBAF (2.0 equiv), THF, 258C, 8 h, 99%; g) IBX
(3.0 equiv), MeCN, 808C, 2 h, 96%; h) MeMgBr (10.0 equiv), THF,
08C, 0.5 h, 72%; i) Dess–Martin periodinane (2.5 equiv), CH2Cl2, 258C,
6 h, 94%; j) CrO3 (10 equiv), AcOH/H2O (2:1), 258C, 6 h, 80%;
k) MCPBA (2.5 equiv), NaHCO3 (2.5 equiv), CH2Cl2, 08C, 4 h, 60%.
DME=dimethoxyethane, DM[O]=Dess–Martin oxidation, IBX=1-hy-
droxy-1,2-benziodoxol-3(1H)-one 1-oxide, MCPBA=m-chloroperben-
zoic acid.
configuration[10] to produce norrisolide (1). Synthetic 1 was
spectroscopically and analytically identical to natural norri-
solide (1).
In conclusion, we have presented herein a synthesis of
(+)-norrisolide (1) that also establishes its absolute stereo-
chemistry. Our strategy is highlighted by the union of
fragments 5 and 6 to produce the natural product after
manipulations of the oxygenated bicyclic moiety. The syn-
thetic approach paves the way for the preparation of
analogues of 1 and will be helpful for the evaluation of the
biological potential of norrisolide and related metabolites.
Received: September 15, 2003 [Z52868]
Keywords: alkylation · Diels–Alder reaction · natural products ·
.
synthetic methods · total synthesis
[16] a) D. H. R. Barton, R. E. O'Brien, S. Sternhill, J. Chem. Soc.
Perkin Trans. 1 1962, 470 – 476. b) A. Fernandez-Mateos, G. P.
Coca, R. R. Gonzalez, C. T. Hernandez, Tetrahedron 1996, 52,
4817 – 4828.
[17] Compound 15 is readily available from d-mannitol by the
procedures reported in the following publications: a) C. R.
Schmid, J. D. Bryant, M. Dowlatzedah, J. L. Phillips, D. E.
Prather, R. D. Shantz, N. L. Sear, C. S. Vianco, J. Org. Chem.
[1] For selected reviews, see: a) D. J. Faulkner in Biomedical
Importance of Marine Organisms, Vol. 13 (Ed.: D. G. Fautin),
Memoirs California Academy of Sciences, San Francisco, CA,
1988, pp. 29–36; b) P. Karuso in Bioorganic Marine Chemistry
Angew. Chem. Int. Ed. 2004, 43, 739 –742
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
741