in solution and in the solid state. Tetra-armed cyclens
(2aꢀ2b, 5aꢀ5f, and 6, Figure 1) bearing benzyl groups
were prepared by reductive amination of cyclen with
aromatic aldehydes in the presence of NaBH(OAc)3. We
also prepared cyclic triamine analogs (3) and an armed
cyclen bearing 2-phenylethyl groups as side arms (4) (see
the SI).
Titration experiments using UVꢀvis spectra were car-
ried out to confirm the Agþꢀπ interactions in solution.
Figure S4(2a) shows the Agþ-ion-induced UVꢀvis spec-
tral changes of 2a. An increase in the absorbance at λmax
(260 nm), without any absorption wavelength shift, was
observed upon the addition of Agþ ions. An inflection
point was observed at 1.0 (= [Agþ]/[2a]), showing a 1:1
Figure 1. Structures of tetra-armed cyclens and analogs.
(6) (a) Baudron, S. A. CrystEngComm 2010, 12, 2288. (b) Beziau, A.;
Baudron, S. A.; Hosseini, M. W. Dalton Trans. 2012, 41, 7227. (c)
Chainok, K.; Neville, S. M.; Forsyth, C. M.; Gee, W. J.; Murray, K. S.;
Batten, S. R. CrystEngComm 2012, 14, 3717. (d) Gao, C.-Y.; Zhao, L.;
Wang, M.-X. J. Am. Chem. Soc. 2012, 134, 824. (e) Goodgame, D. M. L.;
Grachvogel, D. A.; Williams, D. J. J. Chem. Soc., Dalton Trans. 2002,
2259. (f) Guney, E.; Yilmaz, V. T.; Buyukgungor, O. Inorg. Chem.
Commun. 2010, 13, 563. (g) Hamamci, S.; Yilmaz, V. T.; Buyukgungor,
O. Acta Crystallogr., Sect. C 2006, 62, m1. (h) Hao, H.-J.; Sun, D.; Li,
Y.-H.; Liu, F.-J.; Huang, R.-B.; Zheng, L.-S. Cryst. Growth Des. 2011,
11, 3564. (i) Ino, I.; Wu, P.; Munakata, M.; Kuroda-Sowa, T.; Maekawa,
M.; Suenaga, Y.; Sakai, R. Inorg. Chem. 2000, 39, 5430. (j) Kennedy,
A. R.; Brown, K. G.; Graham, D.; Kirkhouse, J. B.; Kittner, M.; Major,
C.; McHugh, C. J.; Murdoch, P.; Smith, W. E. New J. Chem. 2005, 29,
826. (k) Khanna, S.; Verma, S. Cryst. Growth Des. 2012, 12, 3025. (l)
Kim, S. K.; Lee, J. K.; Lee, S. H.; Lim, M. S.; Lee, S. W.; Sim, W.; Kim,
J. S. J. Org. Chem. 2004, 69, 2877. (m) Lahtinen, T.; Wegelius, E.;
Rissanen, K. New J. Chem. 2001, 25, 905–911. (n) Li, B.; Zang, S.-Q.; Li,
H.-Y.; Wu, Y.-J.; Mak, T. C. W. J. Organomet. Chem. 2012, 708ꢀ709,
112. (o) Li, X. Y.; Liu, Q. K.; Ma, J. P.; Huang, R. Q.; Dong, Y. B. Acta
Crystallogr., Sect. C 2009, 65, m45. (p) Liddle, B. J.; Hall, D.; Lindeman,
S. V.; Smith, M. D.; Gardinier, J. R. Inorg. Chem. 2009, 48, 8404. (q)
Lindeman, S. V.; Rathore, R.; Kochi, J. K. Inorg. Chem. 2000, 39, 5707.
(r) Liu, H.-K.; Huang, X.; Lu, T.; Wang, X.; Sun, W.-Y.; Kang, B.-S.
Dalton Trans. 2008, 3178. (s) Luo, G.-G.; Xiong, H.-B.; Sun, D.; Wu,
D.-L.; Huang, R.-B.; Dai, J.-C. Cryst. Growth Des. 2011, 11, 1948. (t)
Munakata, M.; Ning, G. L.; Suenaga, Y.; Kuroda-Sowa, T.; Maekawa,
M.; Ohta, T. Angew. Chem., Int. Ed. 2000, 39, 4555. (u) Munakata, M.;
Wen, M.; Suenaga, Y.; Kuroda-Sowa, T.; Maekawa, M.; Anahata, M.
Polyhedron 2001, 20, 2321. (v) Reger, D. L.; Gardinier, J. R.; Smith,
M. D. Inorg. Chem. 2004, 43, 3825. (w) Richards, P. I.; Steiner, A. Inorg.
Chem. 2004, 43, 2810. (x) Santra, R.; Banerjee, K.; Biradha, K. Chem.
Commun. 2011, 47, 10740. (y) Son, J.-H.; Pudenz, M. A.; Hoefelmeyer,
J. D. Dalton Trans 2010, 39, 11081. (z) Sumby, C. J.; Steel, P. J. Inorg.
Chim. Acta 2007, 360, 2100. (aa) Sun, D.; Luo, G.-G.; Xu, Q.-J.; Zhang,
N.; Jin, Y.-C.; Zhao, H.-X.; Lin, L.-R.; Huang, R.-B.; Zheng, L.-S.
Inorg. Chem. Commun. 2009, 12, 782. (bb) Sun, D.; Zhang, N.; Luo,
G. G.; Huang, R. B.; Zheng, L. S. Acta Crystallogr. C 2010, C66, m75.
(cc) Sun, D.; Zhang, N.; Xu, Q.-J.; Huang, R.-B.; Zheng, L.-S. J.
Organomet. Chem. 2010, 695, 1598. (dd) Tan, H.-Y.; Zhang, H.-X.; Ou,
H.-D.; Kang, B.-S. Inorg. Chim. Acta 2004, 357, 869. (ee) Trzebuniak,
K.; Zarychta, B.; Olijnyk, V. J. Mol. Struct. 2011, 1006, 266. (ff)
Wadepohl, H; Pritzkow, H Acta Crystallogr. 2001, C57, 383. (gg) Wang,
F. Y.; Jiang, X. B.; Tan, X. J.; Xing, D. X. Acta Crystallogr. 2011, C67,
218. (hh) Wen, M.; Munakata, M.; Suenaga, Y.; Kuroda-Sowa, T.;
Maekawa, M. Inorg. Chim. Acta 2002, 332, 18. (ii) Wen, Q.-S.; Zhou,
C.-L.; Qin, D.-B. Acta Crystallogr. 2010, E66, m1030. (jj) Yesilel, O. Z.;
Guenay, G.; Buyukgungor, O. Polyhedron 2011, 30, 364. (kk) Zang,
S.-Q.; Han, J.; Mak, T. C. W. Organometallics 2009, 28, 2677. (ll) Zhao,
L.; Mak, T. C. W. Organometallics 2007, 26, 4439. (mm) Zhao, L.; Zhao,
X.-L.; Mak, T. C. W. Chem.ꢀEur. J. 2007, 13, 5927. (nn) Zheng, S. L.;
Tong, M. L.; Tan, S. D.; Wang, Y.; Shi, J. X.; Tong, Y. X.; Lee, H. K.;
Chen, X. M. Organometallics 2001, 20, 5319. (oo) Zheng, S.-L.; Zhang,
J.-P.; Wong, W.-T.; Chen, X.-M. J. Am. Chem. Soc. 2003, 125, 6882. (pp)
Zheng, X.-F.; Zhu, L.-G. Cryst. Growth Des. 2009, 9, 4407. (qq) Zheng,
X.-F.; Zhu, L.-G. Inorg. Chim. Acta 2011, 365, 419. (rr) Zhong, J. C.;
Munakata, M.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y.; Konaka,
H. Inorg. Chem. 2001, 40, 3191. (ss) Zhou, Y.; Zhang, X.; Chen, W.; Qiu,
H. J. Organomet. Chem. 2008, 693, 205.
complex. From the UVꢀvis spectral data, the log K value
of the complex was estimated to be ca. 6.8.15 When Agþ
ions were added to a mixture of cyclen and m-difluoro-
benzene (= 1/4) (see Figure S4(mix-Ag)), no spectral
changes were observed. Similar spectral changes were
observed in Agþ complexes with calixarene derivatives,
reported by Ho9c and Prodi.10b This result strongly sup-
ports Agþꢀπ interactions between the aromatic side arms
and the Agþ ions in solution.
Figure 2. Agþ-ion-induced 1H NMR shift changes of 2a
(aromatic region) in a mixture of CD2Cl2 and CD3OD (0.75 mL/
0.02 mL). As the intensities of the doublet at δ 6.4 ppm and
the triplet at δ 6.9 ppm increase, the intensities of the doublet at δ
6.9 ppm and the triplet at δ 6.65 ppm decrease. The exchange
rate of the complex and the metal-free ligand would be slower
than the NMR time scale under the conditions used because the
cyclen units bind Agþ ions strongly.
(8) (a) Xu, F. B.; Weng, L. H.; Sun, L. J.; Zhang, Z. Z. Organome-
tallics 2000, 19, 2658–2660. (b) Xu, F.; Li, Q.; Wu, L.; Leng, X.; Li, Z.;
Zeng, Z.; Chow, Y. L.; Zhang, Z. Organometallics 2003, 22, 633.
(9) (a) Arya, P.; Channa, A.; Cragg, P. J.; Prince, P. D.; Steed, J. W.
New J. Chem. 2002, 26, 440. (b) Choi, B.; Yoon, I.; Kim, J.; Kim, J.; Lee,
S. S.; Kim, J. S. Analyst 2002, 127, 947. (c) Ho, I. T.; Haung, K.-C.;
Chung, W.-S. Chem. Asian J. 2011, 6, 2738. (d) Kang, J.; Choi, M.;
Kwon, J. Y.; Lee, E. Y.; Yoon, J. J. Org. Chem. 2002, 67, 4384. (e)
Kimura, K.; Yajima, S.; Tatsumi, K.; Yokoyama, M.; Oue, M. Anal.
Chem. 2000, 72, 5290.
(10) (a) Lee, J. H.; Schlautman, M. A.; Carraway, E. R.; Yim, S.;
Herbert, B. E. J. Photochem. Photobiol., A 2004, 163, 165. (b) Prodi, L.;
Bolletta, F.; Montalti, M.; Zaccheroni, N.; Casnati, A.; Sansone, F.;
Ungaro, R. New J. Chem. 2000, 24, 155.
(11) Akhbari, K.; Morsali, A. CrystEngComm 2010, 12, 3394.
Edwards, D. A.; Mahon, M. F.; Molloy, K. C.; Ogrodnik, V. J. Mater.
Chem. 2003, 13, 563.
(7) (a) Mulliken, E. R. J. Am. Chem. Soc. 1952, 74, 811. (b) Dewar,
M. J. S. Bull. Chim. France 1951, 18, C79.
Org. Lett., Vol. 14, No. 17, 2012
4577