A.A. Scholte et al. / Bioorg. Med. Chem. 12 (2004) 763–770
769
1
mmol) gave salt 15 (93 mg, 99%) as a white powder: IR
3433, 2954, 2870, 2845, 1640, 1586, 1428 cmÀ1 1H
1573, 1427 cmÀ1; H NMR (D2O, 400 MHz) d 4.72(m,
;
2H), 2.54 (m, 1H), 2,41 (dd, 1H, J=5.4 Hz, 14.3 Hz),
2.14 (dd, 1H, J=9.5 Hz, 14.3 Hz), 2.04 (m, 2H), 1.70 (s,
3H), 1.42(m, 4H) 13C NMR (D2O, 100 MHz) d 185.6,
182.6, 148.9, 110.1, 46.9, 42.0, 37.9, 32.5, 25.8, 24.1,
22.3; HRMS (ES–ve) calcd for [MÀH]À C10H15O4
199.0963, found 199.0964.
NMR (D2O, 300 MHz) d 5.48 (m, 1H), 2.21 (m, 2H),
1.45 (m, 3H), 1.23 (m, 2H), 0.88 (d, 6H, J=6.6 Hz); 13C
NMR (D2O, 125 MHz) d 179.4, 174.8, 152.6, 119.8,
38.4, 35.3, 37.6, 25.3, 22.5, 22.4; HRMS (ES–ve) calcd
for [MÀH]À C10H15O4 199.0970, found 199.0976.
3.7.4. (Z)-2-(2-Methyl)butylbutenedioic acid, di-lithium
salt (18). The hydrolysis of ester 17 (99 mg 0.462
mmol) gave salt 18 (102mg, 94%) as a white powder:
3.7.9. (E)-2-(2-Methyl)butenylbutenedioic acid, di-lithium
salt (30). The hydrolysis of ester 29 (14 mg 0.066 mmol)
gave salt 30 (14 mg, 99%) as a white powder: IR 3362,
2938, 1648, 1567, 1390 cmÀ1; 1H NMR (D2O, 300 MHz)
d 6.34 (s, 1H), 4.71 (s, 1H), 4.69 (s, 1H), 2.59 (t, 2H,
J=8.1 Hz), 2.09 (t, 2H, J=7.5 Hz), 1.69 (s, 3H); 13C
NMR (D2O, 75 MHz) d 178.1, 177.2, 147.8, 144.4,
129.4, 110.7, 37.3, 28.0, 22.3; HRMS (ES–ve) calcd for
[MÀH]À C9H11O4 183.0652, found 183.0653.
1
IR 3409, 2954, 2871, 1638, 1574, 1428 cmÀ1; H NMR
(D2O, 300 MHz) d 5.48 (m, 1H), 2.23 (m, 2H), 1.58 (m,
1H), 1.32(m, 2H), 0.87 (d, 6H, J=6.6 Hz); 13C NMR
(D2O, 75 MHz) d 180.0, 175.5, 153.4, 120.2, 37.1, 33.4,
27.9, 22.5; HRMS (ES–ve) calcd for [MÀH]À C9H13O4
185.0814, found 185.0819.
3.7.5. 2-(4-Methyl-pent-4-enyl)-bicyclo[2.2.1]hept-5-ene-
2,3-dioic acid, dilithium salt (21). The hydrolysis of the
anhydride 20 (16 mg, 0.069 mmol) gave salt 21 (25 mg,
99%) as a white powder. IR 3373, 3074, 2967, 1704,
3.7.10. (E)-2-(2-Methyl)pentenylbutenedioic acid, di-li-
thium salt (32). The hydrolysis of ester 31 (15 mg 0.066
mmol) gave salt 32 (15 mg, 99%) as a white powder: IR
1
3328, 2935, 1566, 1502, 1428 cmÀ1; H NMR (D2O,
1
1649, 1551, 1416 cmÀ1; H NMR (D2O, 400 MHz) d
400 MHz) d 6.29 (s, 1H), 4.69 (m, 2H), 2.40 (t, 2H,
J=7.82Hz), 1.98 (t, 2H, J=7.5 Hz), 1.66 (s, 3H), 1.47
(p, 2H, J=7.7 Hz); 13C NMR (CD3OD, 75 MHz) d
178.4, 177.3, 148.7, 144.8, 129.0, 110.3, 37.7, 29.1, 27.1,
22.3; HRMS (ES–ve) calcd for [MÀH]À C10H13O4
197.0808, found 197.0806.
6.29 (dd, 1H, J=2.99 Hz, 5.55 Hz), 6.18 (dd, 1H,
J=2.97 Hz, 5.45 Hz), 4.59 (m, 2H), 2.83 (b, 1H) 2.79 (b,
1H), 2.64 (d, 1H. J=3.05 Hz), 2.07 (m, 3H), 1.73 (4H,
m), 1.57 (d, 1H, J=9.35 Hz), 1.28 (td, 1H, J=1.76 Hz,
8.52Hz); 13C NMR (D2O, 125 MHz) d 184.3, 183.3,
149.0, 138.0, 136.6, 110.1, 64.5, 51.9, 49.5, 47.7, 47.2,
42.8, 38.5, 24.5, 22.5; HRMS (ES-ve) calcd for [MÀH]À
C15H19O4 263.1278, found 263.1276.
3.8. General procedure for Diels–Alder reaction
To a stirring solution of butenedioic acid anhydride (1
equiv) in toluene (2mL) was added freshly prepared
cyclopentadiene (5 equiv). The resulting reaction mix-
ture was stirred at reflux for 5 h. Analysis of the reac-
tion mixture by TLC showed disappearance of starting
material. Solution was cooled to room temperature and
solvent was removed in vacuo. Purification of the crude
product by flash column chromatography gave the
desired cycloadduct.
3.7.6. 2-(3-Methyl-but-3-enyl)-bicyclo[2.2.1]hept-5-ene-
2,3-dicarbonic anhydride (24). The hydrolysis of the
anhydride 23 (16 mg, 0.065 mmol) gave salt 24 (24 mg,
99%) as a white powder.: IR 3417, 3375, 3078, 2988,
2967, 2884, 1646, 1576, 1469 cmÀ1 1H NMR (D2O,
;
500 MHz) d 6.31 (d,d, 1H, J=5.50 Hz, 2.93 Hz), 6.18
(d,d, 1H, J=5.50 Hz, 2.93 Hz), 4.76 (m, 2H), 2.81 (m,
2H), 2.63 (d, 2H, J=3.05 Hz), 2.04 (dt, 2H, J=3.30 Hz,
7.33 Hz), 1.95 (dt, 1H, J=4.76 Hz, 12.46 Hz), 1.72 (s,
3H), 1.51 (m, 4H), 1.27 (dt, 1H, J=1.70 Hz, 8.71 Hz);
13C NMR (D2O, 125 MHz) d 184.3, 183.1, 149.5, 137.8,
136.8, 109.7, 64.4, 61.7, 49.7, 17.6, 47.1, 41.6, 34.9, 22.7;
HRMS (ES +ve) calcd for [M+Na]+ C14H18O4Na
273.1097 found 273.1094.
3.8.1. 2-(4-Methyl-pent-4-enyl)-bicyclo[2.2.1]hept-5-ene-
2,3-dicarbonic anhydride (20). The general procedure
was used. Thus, (Z)-2-(3-methyl-pent-3-enyl)-butene-
dioic acid, anhydride 19 (50 mg, 0.277 mmol) and
cyclopentadiene (0.11 mL, 1.385 mmol) were reacted as
before. Purification of the crude product by flash col-
umn chromatography (SiO2, hexanes/ethyl acetate,
10:1) gave 20 as an oil (40 mg, 59%). IR 3073, 2943,
3.7.7. (Z)-2-(2-Methyl)butenylbutane dioic acid, dilithium
salt (26). The general procedure was followed. The
hydrolysis of ester 25 (21 mg, 0.098 mmol) gave salt 26
(24 mg, quantitative) as a white powder. IR 3372, 2937,
1
1771, 1650, 1459; H NMR (CD2Cl2, 500 MHz) d 6.34
(d,d, 1H, J=5.65 Hz, J=2.90 Hz), 6.26 (d,d, 1H,
J=5.65, 2.90 Hz), 4.72(m, 1H), 4.66 (m, 1H), 3.42(m,
1H), 3.19 (d, 1H, J=4.58 Hz), 3.03 (m, 1H), 2.07 (m,
3H), 1.78 (m, 2H), 1.69 (s, 3H), 1.64 (t, d J=13.13 Hz,
J=4.12 Hz), 1.56 (m, 2H), 1.45 (m, 2H); 3C NMR
(CD2Cl2, 75 MHz) d 174.8, 171.4, 145.1, 137.8, 135.9,
110.9, 59.7, 51.9, 51.3 (2C), 47.2, 38.0, 35.5, 24.2, 22.2;
HRMS (EI) calcd for [M+.] C15H18O3 246.1256 found
246.1254.
1
1580, 1433 cmÀ1; H NMR (D2O, 500 MHz) d 4.75 (m,
2H), 2.56 (m, 1H), 2.45 (dd, 1H, J=5.2Hz, 14.4 Hz),
2.18 (dd, 1H, J=4 Hz, 14 Hz), 2.03 (m, 2H), 1.72 (s,
3H), 1.59 (m, 2H); 13C NMR (D2O, 100 MHz) d 185.5,
182.6, 148.6, 110.4, 46.8, 42.1, 36.2, 31.1, 22.5; HRMS
(ESÀve) calcd for [MÀH]À C9H13O4 185.0808, found
185.0809.
3.7.8. (Z)-2-(2-Methyl)pentenylbutane dioic acid, dilithium
salt (28). The general procedure was followed. The
hydrolysis of ester 27 (21 mg, 0.098 mmol) gave salt 28
(24 mg, quantitative) as a white powder. IR 3356, 2936,
3.8.2. 2-(3-Methyl-but-3-enyl)-bicyclo[2.2.1]hept-5-ene-
2,3-dicarbonic anhydride (23). The general procedure
was used. Thus (Z)-2-(3-methyl-but-3-enyl)-butenedioic