yields, respectively, with an anti/syn (centers C(4), C(5)) ratio
of 11:1. To our knowledge, this is the first time that a buffer
such as Et3NH+TfO- has been used to desilylate silyl sulfi-
Table 1. Hydroallylation of Diene 14a
1
nates (11 identified by H and 13C NMR when running the
reaction in an NMR tube) and to induce the subsequent desul-
fitations 12f13 by retro-ene elimination of SO2 at low
temperature.5a,9
With acid promoters such as Yb(OTf)3, BF3‚Et2O, and
(t-Bu)Me2SiOTf, reactions 8 + 9 and 8 + 10 failed to give
any trace of the desired products 13. With TiCl4, these
reactions had low yields of 10 and 5%, respectively. As
(CF3SO2)2NH promoted reaction 8 + 9f13a with a yield
of 19%, other protic acids (HClO4, FSO3H, CF3SO3H, TsOH)
have been explored as promoters but with little success,
except for 1:1 (R)-1,1′-bi-2-naphthol/SbCl5, where reaction
8 + 9 gave 13a in 28% yield (same anti/syn diastereose-
lectivity, no chiral induction by HPLC).
We then turned to an asymmetric version of our process
and identified (R)- and (S)-1-phenylethanol (relatively cheap
and commercially available) as appropriate chiral auxiliaries.
Dienes 14a-c10 were used in our study together with
allylsilanes 9, 15, and 16 (Table 1). Using Tf2NTMS as an
acidic promoter, all our reactions led to the same anti/syn
(centers C(4), C(5)) diastereoselectivity of 11:111 and prod-
ucts 17-19 were isolated in good yields. There were no other
detectable (<3%) diastereomeric products, showing that (R)-
and (S)-1-phenylethanol are good chiral auxiliaries for the
preparation of these polyketide fragments. With allylsilane
15, we had hoped to be able to isolate intermediates 18′ with
Z ) CH2SiMe3 useful for a second hydroallylation reaction
(see below). Unfortunately, due to the competing ene-reaction
with SO2, the latter were rapidly converted into the corre-
sponding â,γ-unsaturated silyl sulfinates. Under our aqueous
workup conditions the latter were rapidly hydrolyzed and
desulfitated (retro-ene elimination of SO2) to give exclusively
products 18 (Z ) CH2SiMe3fZ ) CH3). With [2-(ace-
toxymethyl)allyl]trimethylsilane (16),12 dienes 14a, 14b, and
ent-14c gave products 19a, 19b, and ent-19c, respectively,
that were isolated as single, pure diastereoisomers in 69, 71,
and 52% yields after flash chromatography on silica gel.
entry
diene
14a b
14b
en t-14cc
14b
14a b
14b
en t-14cc
R1
R2 allylsilane product yield (%)
1
2
3
4
5
6
7
Me iPr
Me Ph
H
Me Ph
Me iPr
Me Ph
9
9
17a
17b
18a
18b
19a
19b
en t-19c
68d
70d
Ph
15
15
16
16
16
69g
74d
69e,f
71e,f
52e,f
H
Ph
a Reaction conditions: (i) CH2Cl2/SO2/Tf2NTMS, -78 °C; (ii) evapora-
tion of SO2; (iii) MeOH/Et3NH+TfO-, -78 °C. b Racemic. c Opposite
enantiomer starting from (R)-1-phenylethanol. d Anti:syn ) 11:1. e Single
product. f Using PhMe instead of CH2Cl2 as a cosolvent with SO2.
g Diastereoselectivity ) 9:1.
containing the acid promoter and cooled to -78 °C. The
mixture was allowed to react for ca. 16 h at -78 °C, followed
by evaporation of SO2 and addition of MeOH containing
Et3NH+TfO-. After aqueous workup and flash chromatog-
raphy, products 13a and 13b were obtained in 68 and 34%
(1) For review, see for example: (a) Paterson, I.; Florence, G. J. Eur. J.
Org. Chem. 2003, 2193. (b) Meyer, C.; Blanchard, N.; Cossy, J. Acc. Chem.
Res. 2003, 36, 766. (c) Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem.
Res. 2003, 36, 48. (d) Sinz, C. J.; Rychnovsky, S. D. Top. Curr. Chem.
2001, 216, 51. (e) Hoffmann, R. Angew. Chem., Int. Ed. 2000, 39, 2054.
For recent methods and applications, see for example: Zacuto, M. J.;
O’Malley, S. J.; Leighton, J. L. Tetrahedron 2003, 59, 8889. Schmidt, D.
S.; Park, P. K.; Leighton, J. L. Org. Lett. 2003, 5, 3535. Kubota, K.;
Leighton, J. L. Angew. Chem., Int. Ed. 2003, 42, 946. Chemler, S. R.; Roush,
W. R. J. Org. Chem. 2003, 68, 1319. Tang, Z.; Jiang, F.; Yu, L.-T.; Cui,
X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc.
2003, 125, 5262. Hamada, T.; Manabe, K.; Ishikawa, S.; Nagayama, S.;
Shiro, M.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 2989. Oisaki, K.;
Suto, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 5644.
Denmark, S. E.; Beutner, G. L. J. Am. Chem. Soc. 2003, 125, 7800. Kiyooka,
S.-i.; Shahid, K. A.; Goto, F.; Okazaki, M.; Shuto, Y. J. Org. Chem. 2003,
68, 7967. Beck, B. J.; Aldrich, C. C.; Fecik, R. A.; Reynolds, K. A.;
Sherman, D. H. J. Am. Chem. Soc. 2003, 125, 4682. Gaunt, M. J.; Jessiman,
A. S.; Orsini, P.; Tanner, H. R.; Hook, D. F.; Ley, S. V. Org. Lett. 2003,
5, 4819. Storer, R. I.; Takemoto, T.; Jackson, P. S.; Ley, S. V. Angew.
Chem., Int. Ed. 2003, 42, 2521. Marshall, J. A.; Bourbeau, M. P. Org. Lett.
2003, 5, 3197. Marshall, J. A.; Ellis, K. C. Org. Lett. 2003, 5, 1729.
Cheˆnevert, R.; Courchesne, G.; Caron, D. Tetrahedron: Asymmetry 2003,
14, 2567. Lautens, M.; Paquin, J.-F. Org. Lett. 2003, 5, 3391. Torres, E.;
Chen, Y.; Kim, I. C.; Fuchs, P. L. Angew. Chem., Int. Ed. 2003, 42, 3124.
Evans, D. A.; Connell, B. T. J. Am. Soc. 2003, 125, 10899. Heathcock, C.
H.; McLaughlin, M.; Medina, J.; Hubbs, J. L.; Wallace, G. A.; Scott, R.;
Clattey, M. M.; Hayer, C. J.; Ott, G. R. J. Am. Soc. 2003, 125, 12884.
Dakin, L.; Panek, J. S. Org. Lett. 2003, 5, 3995.
(5) (a) Deguin, B.; Roulet, J. M.; Vogel, P. Tetrahedron Lett. 1997, 38,
6197. (b) Roulet, J. M.; Puhr, G.; Vogel, P. Tetrahedron Lett. 1997, 38,
6202. (c) Huang, X.; Vogel, P. Synthesis 2002, 232.
(6) (a) Pass, C. S.; Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9 and refs
cited therein. (b) Cheˆnevert, R.; Courchesne, G. Tetrahedron: Asymmetry
1995, 6, 2093. (c) Rychnovsky, S. D.; Yang, G.; Hu, Y.; Khire, U. R. J.
Org. Chem. 1997, 62, 3022. (d) Mun˜oz-Torrero, D.; Bru¨kner, R. Eur. J.
Org. Chem. 1998, 1031. (e) Rychnovsky, S. D.; Fryszman, O.; Khire, U.
R. Tetrahedron Lett. 1999, 40, 41. (f) Barrett, A. G. M.; Braddock, D. C.;
de Konig, P. D.; White, A. J. P.; Williams, D. J. J. Org. Chem. 2000, 2,
1209. (g) BouzBouz, S.; Cossy, J. Org. Lett. 2001, 3, 3995. (h) Lucas, B.
S.; Burke, S. D. Org. Lett. 2003, 5, 3915.
(7) Bouchez, L.; Vogel, P. Synthesis 2002, 225.
(8) (a) Mathieu, B.; Ghosez, L. Tetrahedron Lett. 1997, 38, 5497. (b)
Kasuaki, I.; Yukihiro, H.; Yamamoto, H. Synlett 2001, 1851.
(9) See for example: (a) Mock, W. L.; Nogent, R. M. J. Org. Chem.
1978, 43, 3433. (b) Baudin, J. B.; Julia, S. Bull. Soc. Chim. Fr. 1995, 132,
196.
(2) Narkevitch, V.; Schenk, K.; Vogel, P. Angew. Chem., Int. Ed. 2000,
39, 1806.
(3) (a) Narkevitch, V.; Megevand, S.; Schenk, K.; Vogel, P. J. Org.
Chem. 2001, 66, 5080. (b) Narkevitch, V.; Vogel, P.; Schenk, K. HelV.
Chim. Acta 2002, 85, 1674.
(4) (a) Roversi, E.; Scoppelliti, R.; Solari, E.; Estoppey, R.; Vogel, P.;
Bran˜a, P.; Merendez, B.; Sordo, J. A. Chem.sEur. J. 2002, 8, 1336. (b)
Markovic, D.; Roversi, E.; Scoppelliti, R.; Vogel, P.; Meana, R.; Sordo, J.
A. Chem.sEur. J. 2003, 9, 4911.
(10) Dienes were synthesized as described by Danishevsky (Danishefsky,
S.; Kitahara, T. J. Am. Chem. Soc. 1974, 96, 7807. Danishefsky, S.;
Bednarski, M.; Izawa, T.; Maring, C. J. Org. Chem. 1984, 49, 2290. Li, L.
H.; Tius, M. A. Org. Lett. 2002, 4, 1637) followed by silyl-acyl exchange
(Limat, D.; Schlosser, M. Tetrahedron 1995, 51, 5799).
(11) For details, see Supporting Information.
(12) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1983, 105, 2315.
1054
Org. Lett., Vol. 6, No. 6, 2004