2a -c, of which the last two components possess dendritic
branches of benzyl ether repeating units (Scheme 1).
Rotaxanes can be divided into two distinct molecules,
a macrocycle and a dumbbell, having complementary
binding sites inside. As reported previously,7 the rotax-
anes can be self-assembled in solution when metallocycles
with reversible coordinative bonds are used. The metal-
locycles can be also prepared using various self-as-
sembling motifs, that is, combinations of transition
metals and ligands.8 With this in mind, we prepared
bispyridyl ligands 1a -c and dumbbells 2a -c for syn-
thesis of interlocked supramolecular dendrimers. Syn-
theses of 1a -c and 2a -c are outlined in Schemes 2 and
3, respectively. The benzyl ether dendritic branches were
prepared following a literature procedure9 and attached
to the positions remote from the internal hydrogen-
bonding sites, the 4-position of the pyridine in 1a -c and
the ends of 2a -c, to minimize possible steric crowding
upon their assembly.
Self-Assem bly of In ter lock ed
Su p r a m olecu la r Den d r im er s
Kyu-Sung J eong* and Eun-J in Park
Center for Bioactive Molecular Hybrids and Department of
Chemistry, Yonsei University, Seoul 120-749, Korea
ksjeong@yonsei.ac.kr
Received December 9, 2003
Abstr a ct: Interlocked supramolecular dendrimers were
spontaneously self-assembled from molecular components,
metallocycles, and dumbbells bearing benzyl ether repeating
units. Here, the metallocycles were in situ self-assembled
from L-shaped ligands with dendritic branches, 2,3-di-
methyl-2-butene and osmium tetraoxide. The supramolecu-
lar dendrimers were stabilized by hydrogen-bonding inter-
actions between the pyridine-2,6-dicarboxamide unit in the
metallocycle and the adipamide unit in the dumbbell.
Here, the interlocked dendrimers were assembled in
two different ways: direct self-assembly from the ligand,
olefin, OsO4, and the dumbbell in one pot and stepwise
assembly, self-assembly of the metallocycle first, followed
by the rotaxane.
Self-assembly processes have been proven a powerful
tool for construction of supramolecular dendrimers with
structural diversity over the past decade.1 Owing to the
directionality and strength, hydrogen bonds are particu-
larly useful for the self-assembly of smaller molecular
components to form the supramolecular dendrimers in a
programmed way. Since the pioneering work reported by
Zimmerman,2 several examples of the self-assembled
supramolecular dendrimers mediated by hydrogen-bond-
ing interactions have been reported to date.3-5 Here, we
report on the preparation and kinetic and thermodynamic
stabilities of rotaxane-type dendrimers5,6 that were spon-
taneously assembled by combination of osmylation, co-
ordination, and hydrogen bonding between four different
components, 2,3-dimethyl-2-butene, osmium tetraoxide,
bispyridyl ligands 1a -c, and dumbbell-shaped molecules
The direct self-assembly was investigated using 1H
NMR spectroscopy (Figure 1a-d). When a ligand 1a and
2,3-dimethylbut-2-ene were added to a CDCl3 solution of
a dumbbell 2a , the 1H NMR spectral change of each
compound was negligible (Figure 1c), implying that there
is no appreciable aggregation between these components.
However, two sets of new signals spontaneously appeared
when osmium tetraoxide was added to the above solution
(Figure 1d). One originates from the metallocycle 3a , self-
(5) For pseudorotaxane-based supramolecular dendrimers, see: (a)
Yamaguchi, N.; Hamilton, L. M.; Gibson, H. W. Angew. Chem., Int.
Ed. 1998, 37, 3275-3279. (b) Gibson, H. W.; Hamilton, L., Yamaguchi,
N. Polym. Adv. Technol. 2000, 11, 791-797. (c) Gibson, H. W.;
Yamaguchi, N.; Hamilton, L.; J ones, J . W. Am. Chem. Soc. 2002, 124,
4653-4665. (d) Elizarov, A. M.; Chang, T.; Chiu, S.-H.; Stoddart, J . F.
Org. Lett. 2002, 4, 3565-3568. (e) Dykes, G. M.; Smith, D. K.; Seeley,
G. J . Angew. Chem., Int. Ed. 2002, 41, 3254-3257. (f) J ones, J . W.;
Bryant, W. S.; Bosman, A. W.; J anssen, R. A. J .; Meijer, E. W.; Gibson,
H. W. J . Org. Chem. 2003, 68, 2385-2389. Also see: (g) Kenda, B.;
Diederich, F. Angew. Chem., Int. Ed. 1998, 37, 3154-3158. (h) Lee, J .
W.; Ko, Y. H.; Park, S.-H.; Yamaguchi, K.; Kim, K. Angew. Chem., Int.
Ed. 2001, 40, 746-749.
(6) For rotaxanes bearing dendritic branches, see: (a) Amabilino,
D. B.; Ashton, P. R.; Balzani V.; Brown, C. L.; Credi, A.; Fre´chet, J .
M. J .; Leon, J . W.; Raymo, F. M.; Spencer, N.; Stoddart, J . F.; Venturi,
M. J . Am. Chem. Soc. 1996, 118, 12012-12020. (b) Hu¨bner, G. M.;
Nachtsheim, G.; Li, Q. Y.; Seel, C.; Vo¨gtle, F. Angew. Chem., Int. Ed.
2000, 39, 1269-1272. (c) Reuter, C.; Pawlitzki, G.; Wo¨rsdo¨rfer, U.;
Plevoets, M.; Mohry, A.; Kubota, T.; Okamoto, Y.; Vo¨gtle, F. Eur. J .
Org. Chem. 2000, 3059-3067. (d) Elizarov, A. M.; Chiu, S.-H.; Glink,
P. T., Stoddart, J . F. Org. Lett. 2002, 4, 679-682.
* To whom correspondence should be addressed. Fax: (+) 82-2-364-
7050. Tel: (+) 82-2-2123-2643.
(1) For reviews, see: (a) Zeng, F.; Zimmerman, S. C. Chem. Rev.
1997, 97, 1681-1712. (b) Balzani, V.; Campagna, S.; Denti, G.; J uris,
A.; Serroni, S.; Venturi, M. Acc. Chem. Res. 1998, 31, 26-34. (c)
Narayanan, V. V.; Newkome, G. R. Top. Curr. Chem. 1998, 197, 19-
77. (d) Fischer, M.; Vo¨gtle, F. Angew. Chem., Int. Ed. 1999, 38, 884-
905. (e) Smith, D. K.; Diederich, F. Top. Curr. Chem. 2000, 210, 183-
227. (f) Dykes, G. M. J . Chem. Technol. Biotechnol. 2001, 76, 903-
918. (g) Grayson, S. M.; Fre´chet, J . M. J . Chem. Rev. 2001, 101, 3819-
3867. (h) Zimmerman, S. C.; Lawless, L. J . Top. Curr. Chem. 2001,
217, 95-120.
(2) Zimmerman, S. C.; Zeng, F.; Reichert, D. E. C.; Kolotuchin, S.
V. Science 1996, 271, 1095-1098.
(3) (a) Wang, Y.; Zeng, F.; Zimmerman, S. C. Tetrahedron Lett. 1997,
38, 5459-5462. (b) Kraft, A.; Osterod, F.; Fro¨hlich, R. J . Org. Chem.
1999, 64, 6425-6433. (c) Corbin, P. S.; Lawless, L. J .; Li, Z.; Ma, Y.;
Witmer, M. J .; Zimmerman, S. C. Proc. Nat. Acad. Sci. U.S.A. 2002,
99, 5099-5104. (d) Goh, S. L.; Francis, M. B.; Fre´chet, J . M. J . Chem.
Commun. 2002, 2954-2955. (e) Ma, Y.; Kolotuchin, S. V.; Zimmerman,
S. C. J . Am. Chem. Soc. 2002, 124, 13757-13769.
(4) For other supramolecular dendrimers, see: (a) Enomoto, M.;
Aida, T. J . Am. Chem. Soc. 1999, 121, 874-875. (b) Percec, V.; Cho,
W.-D. Ungar, G.; Yeardley, D. J . P. J . Am. Chem. Soc. 2001, 123, 1302-
1315. (c) Percec, V.; Holerca, M. N.; Uchida, S.; Cho, W.-D.; Ungar,
G.; Lee, Y.; Yeardley, D. J . P. Chem. Eur. J . 2002, 8, 1106-1117. (d)
Percec, V.; Glodde, M.; J ohansson, G.; Balagurusamy, V. S. K.; Heiney,
P. A. Angew. Chem., Int. Ed. 2003, 42, 4338-4342.
(7) (a) J eong, K.-S.; Choi, J . S.; Chang, S.-Y.; Chang, H.-Y. Angew.
Chem., Int. Ed. 2000, 39, 1692-1695. (b) Chang, S.-Y.; Choi, J . S.;
J eong, K.-S. Chem. Eur. J . 2001, 7, 2687-2697. (c) Chang, S.-Y.; J ang,
H.-Y.; J eong, K.-S. Chem. Eur. J . 2003, 9, 1535-1541. (d) Chang, S.-
Y.; J eong, K.-S. J . Org. Chem. 2003, 68, 4014-4019. (e) Hunter, C. A.;
Low, C. M. R.; Packer, M. J .; Spey, S. E.; Vinter, J . G.; Vysotsky, M.
O.; Zonta, C. Angew. Chem., Int. Ed. 2001, 40, 2678-2682.
(8) For recent reviews, see: (a) Leininger, S.; Olenyuk, B.; Stang,
P. J . Chem. Rev. 2000, 100, 853-908. (b) Holliday, B. J .; Mirkin, C. A.
Angew. Chem., Int. Ed. 2001, 40, 2022-2043. (c) Sun, S.-S.; Lees, A.
J . Coord. Chem. Rev. 2002, 230, 171-192.
(9) (a) Hawker, C. J .; Fre´chet, J . M. J . J . Am. Chem. Soc. 1990, 112,
7638-7647. (b) Hawker, C. J .; Fre´chet, J . M. J . J . Chem. Soc., Chem.
Commun. 1990, 1010-1013.
10.1021/jo035798u CCC: $27.50 © 2004 American Chemical Society
Published on Web 03/03/2004
2618
J . Org. Chem. 2004, 69, 2618-2621