774
K.S. Coleman et al. / Journal of Organometallic Chemistry 689 (2004) 770–774
4.4. Preparation of tetracarbonyl[P,P0-bis[dimethyl(dim-
ethylphosphino)silyl]ferrocene]-molybdenum (4)
Acknowledgements
We thank the Royal Society for a University Re-
search Fellowship (K.S.C.), the EPSRC for a student-
ship (S.T.) and Balliol College for a Dervorguilla
Scholarship (S.I.P.).
1,10-Bis[dimethyl(dimethylphosphino)silyl]ferrocene
(2) (0.58 g, 1.4 mmol) was dissolved in THF (20 ml) and
added dropwise to a stirred solution of (norbornadi-
ene)tetracarbonylmolybdenum (0.41 g, 1.4 mmol) dis-
solved in THF (30 ml). On addition the green-yellow
solution changed to an orange colour. Once addition
was complete, the reaction was heated to 65 °C under
nitrogen for 3 h. After cooling to room temperature,
volatiles were removed under vacuum and the resulting
light orange solid was washed with 5 ml of pentane. The
solid was then dried under vacuum. Yield ¼ 0.69 g, 80%.
References
[1] G.W. Parshall, S.D. Ittel, Homogeneous Catalysis, second ed.,
Wiley, New York, 1992.
[2] G. Bandoli, A. Dolmella, Coord. Chem. Rev. 209 (2000) 161.
[3] T. Ishiyama, H. Kizaki, T. Hayashi, A. Suzuki, N. Miyaura,
J. Org. Chem. 63 (1998) 4726.
3
1H NMR (CD2Cl2, 500 MHz): d 0.35 (d, JPH ¼ 4.39
2
Hz, 12H, SiCH3), 1.52 (d, JPH ¼ 5.37 Hz, 12H, PCH3),
[4] J.F. Ma, Y. Yamamoto, J. Organomet. Chem. 574 (1999) 148.
[5] U. Nettekoven, P.C.J. Kamer, M. Widhalm, P.W.N.M. van
Leeuwen, Organometallics 19 (2000) 4596.
3
3
4.28 (t, JHH ¼ 3.42 Hz, 4H, Cp-H), 4.39 (t, JHH ¼ 3.42
Hz, 4H, Cp-H). 13C{1H} NMR CD2Cl2, 125.7): d )2.22
1
[6] T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K.
Hirotsu, J. Am. Chem. Soc. 106 (1984) 158.
(t, 4.30 Hz, SiCH3), 15.50 (dd, JPC ¼ 8.06 Hz,
3JPC ¼ 3.22 Hz, PCH3), 67.76 (d, 1JPC ¼ 5.90 Hz, Cpipso
-
C), 71.31 (s, Cp-C). 74.08 (s, Cp-C), 210.49 (t,
[7] H.C.L. Abbenhuis, U. Burckhardt, V. Gramlich, A. Togni, A.
Albinati, B. Mueller, Organometallics 13 (1994) 4481.
[8] D. Enders, R. Peters, R. Lochtman, G. Raabe, J. Runsink, J.W.
Bats, Eur. J. Org. Chem. 20 (2000) 3399.
2JPC ¼ 9.16 Hz, cis-CO), 215.82 (d, JPC ¼ 13.97 Hz,
2
trans-CO). 31P{1H} NMR (CD2Cl2, 202.4 MHz): d
)95.74 (s, SiPMe2Mo). MS (EI) m=z 632 [Mþ] (34%).
Selected IR data (m(CO) cmꢀ1, nujol mull, KBr plates)
2008 (m), 1908 (s), 1900 (s), 1880 (s, br). Elemental
analysis (%): Found (Calc.) C, 42.68 (41.92); H, 5.34
(5.12)%.
[9] R.M. Bellabarba, G.P. Clancy, P.T. Gomes, A.M. Martins, L.H.
Rees, M.L.H. Green, J. Organomet. Chem. 640 (2001) 93.
[10] J.-F. Ma, Y. Yamamoto, J. Organomet. Chem. 574 (1999) 148.
[11] Y. Yamamoto, T. Tanase, I. Mori, Y. Nakamura, J. Chem. Soc.,
Dalton Trans. (1994) 3191.
€
[12] H. Schumann, H.-J. Kroth, Z. Naturforsch. 32B (1977) 513.
[13] G. Fritz, H. Schafer, Z. Anorg. Allg. Chem. 406 (1974) 167.
€
[14] K. Hassler, J. Organomet. Chem. 348 (1988) 33.
[15] C. Angelakos, D.B. Zamble, D.A. Foucher, A.J. Lough, I.
Manners, Inorg. Chem. 33 (1994) 1709.
5. X-ray crystallography
[16] D.A. Armitage, S. Patai, Z. Rappoport, The Chemistry of Organic
Silicon Compounds, Wiley, New York, 1989.
Crystals were isolated under dinitrogen, covered with
a perfluoropolyether oil, and mounted on the end of a
glass fibre. Crystal data are summarised in Table 1.
All data were collected at 150 K using an Enraf-
Nonius KappaCCD diffractometer with graphite
[17] F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen,
R. Taylor, J. Chem. Soc., Perkin Trans. II (1987) S1.
[18] A.G. Avent, D. Bonafoux, C. Eaborn, S.K. Gupta, P.B. Hitch-
cock, J.D. Smith, J. Chem. Soc., Dalton Trans. (1999) 831.
[19] D.A. Foucher, C.H. Honeyman, A.J. Lough, I. Manners, J.M.
Nelson, Acta Crystallogr., Sect. C 51 (1995) 1795.
ꢀ
monochromated Mo Ka radiation (k ¼ 0:71073 A), as
[20] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson,
R. Taylor, J. Chem. Soc., Dalton Trans. (1989) S1.
summarised in Table 1. The images were processed with
the DENZO and SCALEPACK programs [26]. All solu-
tion, refinement, and graphical calculations were per-
formed using the CRYSTALS program suite [27]. The
crystal structures were solved by direct methods using
the SIR92 program [28] and were refined by full-matrix
least squares on F. All non-hydrogen atoms were refined
with anisotropic displacement parameters. All carbon-
bound hydrogen atoms were generated and allowed to
ride on their corresponding carbon atoms with fixed
thermal parameters.
[21] J. Grobe, P.H. Kunik, Z. Anorg. Allg. Chem. 619 (1993) 47.
[22] K. Issleib, A. Tzschach, Chem. Ber. 93 (1960) 1852.
[23] A. Zschunke, M. Riemer, H. Schmidt, K. Issleib, Phosphorus
Sulfur 17 (1983) 237.
[24] D.L. Zechel, D.A. Foucher, J.K. Pudelski, G.P.A. Yap, A.L.
Rheingold, I. Manners, J. Chem. Soc., Dalton Trans. (1995) 1893.
[25] M.A. Bennett, L. Pratt, G. Wilkinson, J. Chem. Soc. (1961)
2037.
[26] Z. Otwinowski, W. Minor, in: C.W. Carter, R.M. Sweet (Eds.),
Processing of X-ray Diffraction Data Collected in Oscillation
Mode, Methods Enzymology, 276, Academic Press, 1997.
[27] D.J. Watkin, C.K. Prout, J.R. Carruthers, P.W. Betteridge, R.I.
Cooper, CRYSTALS issue 11, Chemical Crystallography Labora-
tory, Oxford, UK, 2001.
Crystallographic data for the structural analyses have
been deposited with the Cambridge Crystallographic
Data Centre, CCDC No. 224907 for compound 1 and
224908 for compound 2.
[28] A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M.C.
Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 27 (1994) 435.