Page 3 of 3
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
DOI: 10.1039/C5CC04051E
and also the elemental analysis that suggested the correct
molecular formula for 26.20 Moreover, the melting point of Brooks’
26 (129 – 131 oC) closely matched the one recorded by Tiemann for
“oxyjonolacton”. In 2007 Kamat and coworkers revisited Tiemann’s
and Brooks’ work and with the benefit of X-ray crystallography,
NMR and mass spectrometry were able to unambiguously show
that 26 is indeed the correct structure of hydroxyionolactone.21 This
all leaves little doubt that Tiemann’s reaction and ours are the same
and allows us to trace the origins of our work to the late 19th
century.
Org. Lett., 2014, 16, 2830–2833.
14 E. J. Corey and A. K. Ghosh, Chem. Lett., 1987, 223–226.
15 The intramolecular oxa-Michael addition is a forbidden 5-
endo-trig process and may therefore be less likely than the
oxa-Nazarov mechanism. See S.I. and Scheme 1 in: J. E.
Baldwin, J. Cutting, W. Dupont, L. Kruse, L. Silberman and R.
C. Thomas, Chem. Commun., 1976, 736–738.
16 F. Tiemann, Chem. Ber., 1898, 31, 808–866. The procedure
for the oxidation and structure 27 appear on p. 857. This
oxidation was apparently performed on the mixture of α-
and β-ionones since the separation of the two ionone
isomers is first mentioned in his next paper that immediately
follows: F. Tiemann, Chem. Ber., 1898, 31, 867–881.
17 (a) Simonsen, J. L. “The Terpenes”, Cambridge University
Press, 2nd ed., 1947, Vol. I, p. 128. (b) E. H. Rodd, “Chemistry
of Carbon Compounds”, Elsevier, Amsterdam, 1953, Vol. II, p.
503.
Notes and references
18 To the best of our knowledge, Tiemann never showed a β-
lactone structure for his “oxyjonolacton”, so the origin of 28
remains unclear. Note also that 27 might have been an
expected product of permanganate oxidation of α-ionone,
whereas it is an unlikely oxidation product of β-ionone.
Tiemann may have contributed to some of the confusion in
Chem. Ber. 1898, 31, 867–881 by showing the correct
structure of α-ionone, but labelling it as β-ionone on p. 870,
then showing the same structure on p. 874 labelled as α-
ionone. On p. 881 he showed the correct structure for β-
ionone but labelled it as α-ionone. On pp. 872–873 the
oxidation of β-ionone to “oxyjonolacton” with
permanganate is mentioned and structure 27 shown,
referring to his preceding paper for the procedure. In a paper
published posthumously, Tiemann correctly assigned
structures to α- and β-ionone: F. Tiemann, Chem. Ber., 1900,
33, 3703–3710.; see pp. 3709–3710.
19 C. J. W. Brooks, G. Eglinton and D. S. Magrill, J. Chem. Soc.,
1961, 308–310.
20 It is interesting to note that Tiemann’s elemental analytical
data more closely matched the correct C/H ratio for 26 than
for 27, the structure he assigned.
21 S. P. Kamat, A. M. D’Souza, S. K. Paknikar, M. M. Bhadbhade
and R. G. Gonnade, Ind. J. Chem., 2007, 46B, 1038–1041.
Note that there is an error in the structure shown for 26
(compound 3 in the paper) on the first page: the angular
methyl group is missing. The correct structure appears later
in the paper.
1
2
3
N. Kiriyama, K. Nitta, Y. Sakaguchi, Y. Taguchi and Y.
Yamamoto, Chem. Pharm. Bull., 1977, 25, 2593–2601.
A. Ingerl, K. Justus, V. Hellwig and W. Steglich, Tetrahedron,
2007, 63, 6548–6557.
K. Justus, R. Herrmann, J.-D. Klamann, G. Gruber, V. Hellwig,
A. Ingerl, K. Polborn, B. Steffan and W. Steglich, Eur. J. Org.
Chem., 2007, 5560–5572.
M. F. Braña, L. M. García, B. López, B. de Pascual-Teresa, A.
Ramos, J. M. Pozuelo and T. M. Domínguez, Org. Biomol.
Chem., 2004, 2, 1864–1871.
M. Suzuki, Y. Hosaka, H. Matsushima, T. Goto, T. Kitamura
and K. Kawabe, Cancer Lett., 1999, 138, 121–130.
(a) W. Guo, X. Wang, B. Zhang, S. Shen, X. Zhou, P. Wang, Y.
Liu and C. Li, Chem. Eur. J., 2014, 20, 8545–8550. (b) V.
Liautard, D. Jardel, C. Davies, M. Berlande, T. Buffeteau, D.
Cavagnat, F. Robert, J.-M. Vincent and Y. Landais, Chem. Eur.
J., 2013, 19, 14532–14539. (c) B. Zhang, Z. Jiang, X. Zhou, S.
Lu, J. Li, Y. Liu and C. Li, Angew. Chem. Int. Ed., 2012, 51,
13159–13162. (d) D. Lee, S. G. Newman and M. S. Taylor,
Org. Lett., 2009, 11, 5486–5489. (e) F. Bailly, C. Queffélec, G.
Mbemba, J.-F. Mouscadet, N. Pommery, J. Pommery, J.-P.
Hénichart and P. Cotelle, Eur. J. Med. Chem., 2008, 43, 1222–
1229. (f) J.-M. Vincent, C. Margottin, M. Berlande, D.
Cavagnat, T. Buffeteau and Y. Landais, Chem. Commun.,
2007, 4782–4784. (g) P. Dambruoso, A. Massi and A.
Dondoni, Org. Lett., 2005, 7, 4657–4660. (h) N. Gathergood,
K. Juhl, T. B. Poulsen, K. Thordrup and K. A. Jørgensen, Org.
Biomol. Chem, 2004, 2, 1077–1085. (i) D. Enders, H. Dyker
and F. R. Leusink, Chem. Eur. J., 1998, 4, 311–320.
4
5
6
7
8
(a) R. Dede, L. Michaelis and P. Langer, Tetrahedron Lett.,
2005, 46, 8129–8131. (b) R. Dede, L. Michaelis, D. Fuentes,
M. A. Yawer, I. Hussain, C. Fischer and P. Langer,
Tetrahedron, 2007, 63, 12547–12561.
For examples of selenium dioxide mediated oxidation of
methyl ketones to α-ketoacids see: (a) G. Hallmann and K.
Hägele, Ann. Chem., 1963, 662, 147–159. (b) M. C. Pirrung
and R. J. Tepper, J. Org. Chem., 1995, 60, 2461–2465. See
also: X. Xu, W. Ding, Y. Lin and Q. Song, Org. Lett., 2015, 17,
516–519.
(a) Ramachandran, S. and M. S. Newman, Org. Synth., Coll.
Vol. 5, 1973, 486–489. (b) R. B. Woodward, F. Sondheimer,
D. Taub, K. Heusler and W. M. McLamore, J. Am. Chem. Soc.,
1952, 74, 4223–4251.
9
10 (a) P. Cordier, Bull. Soc. Chim. Fr., 1953, C37–C40. (b) P.
Cagniant, Ann. Chim. (Paris), 1952, 7, 457–470.
11 T. Kurihara, Y. Sakamoto, T. Kobayashi and M. Mori, J. Het.
Chem., 1978, 15, 737–743.
12 V. L. Gein, L. F. Gein, E. N. Bezmaternykh and E. V. Voronina,
Pharm. Chem. J., 2000, 34, 254–256.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins