2292
R. Rodriguez et al. / Tetrahedron Letters 45 (2004) 2289–2292
3. Linclau, B.; Vandewalle, M. Synlett 1995, 1063–1064.
4. Hanazawa, T.; Wada, T.; Masuda, T.; Okamoto, S.; Sato,
F. Org. Lett. 2001, 3975–3977.
5. Addo, J. K.; Swamy, N.; Ray, R. Bioorg. Med. Chem.
Lett. 2002, 12, 279–281.
6. The dienyne approach was first developed by Lythgoe,
11. In a pioneer work, Inhoffen reported that the addition of
lithium acetylide to 4-(tetrahydropyran-2-yloxy)-methyl-
cyclohexene oxide proceeds in just 33% yield. No expla-
nation of the origin of this low yield and no structure of
side products were proposed: Inhoffen, H. H.; Weissem-
erel, K.; Quinkert, G.; Bartling, D. Chem. Ber. 1956, 89,
853–861; For other studies on ring opening of methyl-
cyclohexene oxide by lithium acetylide, see: (a) Hanack,
M.; Kunzmann, E.; Schumacher, W. Synthesis 1978, 26–
27; (b) Hopf, H.; Kirsch, R. Angew. Chem., Int. Ed. Engl.
1985, 24, 783–786.
12. Various examples reported in the literature showed that
nucleophilic attacks of cis- and trans-4-substituted methyl-
cyclohexene oxides initiate the selective ring opening of
trans isomers, exclusively. For recent references, with
nitrogen centred nucleophiles: Chrisman, W.; Camara,
J. N.; Marcellini, K.; Singaram, B.; Goralski, C. T.;
Hasha, D. L.; Rudolf, P. R.; Nicholson, L. W.; Borody-
chuk, K. K. Tetrahedron Lett. 2001, 42, 5805–5807, with
phosphorus centred nucleophiles: Muller, G.; Sainz, D.
J. Organomet. Chem. 1995, 495, 103–111.
~
and later improved by Mourino: (a) Dixon, J.; Littlewood,
P. S.; Lythgoe, B.; Saksena, A. K. J. Chem. Soc., Chem.
~
Commun. 1970, 993–994; (b) Castedo, L.; Mourino, A.;
Sarandeses, L. A. Tetrahedron Lett. 1986, 27, 1523–1526;
~
~
(c) Castedo, L.; Mascarenas, J. L.; Mourino, A.;
Sarandeses, L. A. Tetrahedron Lett. 1988, 29, 1203–
1206.
7. Epoxidation of ())-(S)-limonene by m-CPBAgave a 3:2
trans/cis mixture of 1,2-limonene oxide in 80% yield. The
ratio was determined by GC analysis and confirmed by
Cane and Coates: Cane, D. E.; Yang, G.; Coates, R. M.;
Pyun, H.-J.; Hohn, T. M. J. Org. Chem. 1992, 57, 3454–
3462.
8. (a) Criegee, R.; Kaspar, R. J. Liebigs Ann. Chem. 1948,
560, 127; (b) Criegee, R. Angew. Chem., Int. Ed. Engl.
1975, 14, 745–752; (c) Muralidharan, K. R.; Lera, A. R.;
Isaeff, S. D.; Norman, A. W.; Okamura, W. H. J. Org.
Chem. 1993, 58, 1895–1899; (d) Daniewski, A. R.;
Garofalo, L. M.; Hutchings, S. D.; Kabat, M. M.; Liu,
W.; Okabe, M.; Radinov, R.; Yiannikouros, G. P. J. Org.
Chem. 2002, 67, 1580–1587.
13. (a) Crandall, J. K.; Chang, L. J. Org. Chem. 1967, 32, 435–
439; (b) Crandall, J. K.; Chang, L. J. Org. Chem. 1968, 33,
2375–2378; (c) Miginiac, P.; Zamlouty, G. Bull. Soc. Chim.
Fr. 1975, 1740–1744.
25
D
14. Spectral data of 15: ½a À 20:5° (c 2.26, CHCl3); IR (film)
mmax 3419, 3304, 3011, 1637, 1216, 1068, 1025 cmÀ1
;
1H
9. The relative configuration of each diastereoisomers was
assigned by comparison with the spectrum of the cis- and
trans-4-hydroxy-methylcyclohexene oxides reported in the
literature, and also the integration of each signal: Delay,
D.; Ohloff, G. Helv. Chim. Acta 1979, 62, 2168–2173.
10. The stereochemistry was supported by NOESY experi-
ments, that showed correlation between propargylic H-2
and methyl-1 in compound 10a, but not between H-2 and
H-4.
NMR (CDCl3, 300 MHz) d 1.74 (ddt, J ¼ 13:1, 8.3,
5.7 Hz, 1H), 1.85–1.94 (m, 1H), 1.96–2.10 (m, 1H), 2.15
(s, 1H), 2.23–2.54 (m, 3H), 3.08 (s, 1H), 3.63–3.70 (m, 1H),
4.29 (s, 2H), 4.55 (s, 2H), 7.26–7.33 (m, 5H); 13C NMR
(CDCl3, 75 MHz) d 24.9, 26.9, 35.7, 64.5, 70.1, 72.3, 80.4,
82.5, 113.7, 127.6 (3CH), 128.4 (2CH), 138.7, 145.6; MS
(EI, 70 eV) m=z 243 ([Mþ+1], 10), 242 ([Mþ], 45), 151 (40),
136 (19), 123 (16), 109 (100), 91 (49), 81 (21), 79 (24), 77
(20), 65 (21), 43 (11).