ACCEPTED MANUSCRIPT
another Nd[N(SiMe3)2]3(0.08 g, 0.13 mmol) was added to the
References
stirring reactant. The solution was warmed to room temperature
slowly, and stirred for another 10h. The solvent was removed
under vacuum and a hexane/toluene solvent mixture was added
to extract complex 1b. Little blue block crystals were obtained at
-20°C in 2-3 days. Yield: 40%.
[1]
[2]
[3]
W.A. Herrmann, Angew. Che. Int. Ed. 41 (2002) 1290-1309.
J.C. Garrison, W.J. Youngs, Chem. Rev. 105 (2005) 3978-4008.
D. Bourissou, O. Guerret, F.P. Gabbai, G. Bertrand, Chem. Rev. 100
(2000) 39-91.
R. Liu, S. Zhu, H. Shi, J. Hu, M. Shu, J. Liu, H. Zhu, Inorg. Chem. Comm.
74 (2016) 26-30.
A. Ou, L. Wu, A. Salvador. G, Sipos, G. Zhao, B.W. Skelton, A.N.
Sobolev, R. Dorta, Dalton Trans. 46 (2017) 3631-3641.
S. Ando, H. Mataunaga, T. Ishizuka, J. Organic Chem. 82 (2017)
1266-1272.
M.Z. Ghdhayeb, R.A. Haque, S. Budagumpi, M.B.K. Ahamed, A.M.A.
Majid, Inorg. Chem. Comm. 75 (2017) 41-45.
[4]
[5]
[6]
[7]
[8]
[9]
4.6 Synthesis of complex 2a.
A suspension of H2L2 (0.05 g, 0.14 mmol) in toluene (10 mL)
was treated with Y[N(SiMe3)2]3 (0.08 g, 0.14 mmol) at room
temperature and stirred for about 30min. Then KN(SiMe3)2 (0.06
g, 0.26 mmol) toluene solution was added to the stirring reactant.
The mixture was stirred overnight at room temperature, and then
the solvent was removed under vacuum. A hexane/toluene
solvent mixture was added to extract complex 2a. Colorless
A.J. Arduengo, R.L. Harlow, M. Kline, J. Am. Chem. Soc. 113 (1991)
361-363.
Y. Kong, L. Wen, H. Song, S. Xu, M. Yang, B. Liu, B. Wang,
Organometallics. 30 (2011) 153-159.
[10] Y. Kong, H. Ren, S. Xu, H. Song, B. Liu, B. Wang, Organometallics. 28
(2009) 5934-5940.
[11] N.A. Jones, S.T. Liddle, C. Wilson, P.L. Arnold, Organometallics. 26
(2007) 755-757.
[12] Z. Wang, H. Sun, H. Yao, Q. Shen, Y. Zhang, Organometallics. 25 (2006)
4436-4438.
[13] S.P. Downing, A.A. Danopoulos, Organometallics. 25 (2006)
1337-1340.
1
block crystals were obtained at -20°C in a week. Yield: 38%. H
NMR (600 MHz, C6D6, 25°C) δ 7.13 (t, 1H, C6H4), 7.08 (d, 1H,
C6H4), 7.05 (dd, 1H, C6H4), 7.03 – 6.99 (m, 1H, C6H4), 6.57 (s, 2H,
C6H2Me3), 4.55 (s, 2H, CH2), 2.77 (s, 2H, NCH2CH2CH2N), 2.39
(s, 2H, NCH2CH2CH2N), 2.08 (s, 3H, C6H2Me3), 1.81 (s, 6H,
C6H2Me3), 1.49 (d, 2H, NCH2CH2CH2N), 0.58 (s, 36H,
N[Si(CH3)3]2), 0.10 (s, 18H, N[Si(CH3)3]2). 13C NMR (151 MHz,
C6D6, 25°C) δ 227.16(Ccarbene-K), 164.45, 144.41, 137.90, 136.46,
135.18, 132.43, 129.62, 129.34, 128.56, 126.85, 125.67, 123.63,
114.28(Ar-C), 55.63(CH2), 43.35(CH2), 42.15(CH2), 32.00(CH2),
[14] D. Wang, D. Cui, W. Gao, T. Tang, X. Chen, X. Jing, Organometallics.
26 (2007) 3167-3172.
[15] B. Wang, D. Cui, K. Lv, Macromolecules. 41 (2008) 1983-1988.
[16] C. Yao, C. Wu, B. Wang, D. Cui, Organometallics. 32 (2013)
2204-2209.
[17] C. Yao, F. Lin, M. Wang, D. Liu, B. Liu, N. Liu, Z. Wang, S. Long, C. Wu,
D. Cui, Macromolecules. 48 (2015) 1999-2005.
[18] M. Zhang, X. Ni, Z. Shen, Organometallics. 33 (2014) 6861-6867.
[19] M. Zhang, J. Zhang, X. Ni, Z. Shen, Rsc Adv. 5 (2015) 83295-83303.
[20] A.A. Danopoulos, P. Braunstein, Chem. Comm. 55 (2014) 3055-3057.
[21] A. Binobaid, M. Iglesias, D.J. Beetstra, B. Kariuki, A. Dervisi, I.A. Fallis,
K.J. Cavell, Dalton Trans. 35 (2009) 7099-7122.
21.45(CH3),
21.21(tol),
20.85(CH3),
17.58(CH2),
6.90(N[Si(CH3)3]2), 2.67(N[Si(CH3)3]2).
[22] J.J. Dunsford, K.J. Cavell, Dalton Trans. 40 (2011) 9131-9135.
[23] M.A. Topchiy, P.B. Dzhevakov, M.S. Rubina, O.S. Morozov, A.F.
Asachenko, M.S. Nechaev, Eur. J. Organic Chem. 10 (2016)
1908-1914.
[24] R.W. Alder, M.E. Blake, C. Bortolotti, S. Bufali, C.P. Butts, E. Linehan,
J.M. Oliva, A.G. Orpen, M.J. Quayle, Chem. Comm. 3 (1999) 241-242.
[25] S.A. Mungur, S.T. Liddle, C.Wilson, M.J. Sarsfield, P.L. Arnold, Chem.
Comm. 23 (2004) 2738-2739.
[26] M. Brendel, J. Wenz, I.V. Shishkov, F. Rominger, P. Hofmann,
Organometallics. 34 (2015) 669-672.
[27] T. Simler, L. Karmazin, C. Bailly, P. Braunstein, A.A. Danopoulos,
Organometallics. 35 (2016) 903-912.
4.7 Synthesis of complex 2b.
A suspension of H2L2 (0.05 g, 0.14 mmol) in toluene (10 mL)
was treated with Nd[N(SiMe3)2]3 (0.09 g, 0.14 mmol) at room
temperature and stirred for about 30min. Then another
KN(SiMe3)2 (0.06 g, 0.26 mmol) toluene solution was added to
the stirring reactant. The mixture was stirred overnight at room
temperature, and then the solvent was removed under vacuum.
A hexane/toluene solvent mixture was added to extract complex
2b. Blue block crystals were obtained at -20°C in a week. Yield:
36%.
[28] C. Yuan, Y. Wu, X. Wang, Inorg. Chem. Comm. 63 (2015) 61-64.
[29] P.L. Arnold, Z.R. Turner, R. Bellabarba, R.P. Tooze. J. Am. Chem. Soc.
133 (2011) 11744-11756.
[30] S.P. Roche, M.L. Teyssot, A. Gautier, Tetrahedron Lett. 51 (2010)
1265-1268.
4.8 X-ray crystallographic study
[31] A.W. Waltman, R.H. Grubbs, Organometallics. 23 (2004) 3105-3107.
[32] Y. Luo, W. Li, D. Lin, Y. Yao, Y. Zhang, Q. Shen, Organometallics. 29
(2010) 3507-3514.
[33] Y. Kong, S. Xu, H. Song, B. Wang, Organometallics. 31 (2012)
5527-5532.
[34] P.L. Arnold, M. Rodden, C. Wilson, Chem. Comm. 13 (2005)
1743-1745.
[35] M. Westerhausen, M. Hartmann, A. Pfitzner, W. Schwarz, Z. Anorga.
Allg. Chem. 621 (1995) 837-850.
Single crystals of complexes 1a-2b were sealed in liquid
paraffin oil for determination of the single-crystal structures. Data
were collected at 170 K on a CrysAlisPro, Oxford DiffractionLtd.
using graphite-monochromatic Mo Ka radiation (l ¼0.71073 A).
The data sets were corrected by empirical absorption correction
using spherical harmonics, implemented in SCALE3ABSPACK
scaling algorithm. All structures were solved by direct methods,
and refined by full-matrix least-square methods based on |F|2.
The structures were solved and refined using SHELX-97
programs. All non-hydrogen atoms were located successfully
from Fourier maps and were refined anisotropically.
[36] R.A. Andersen, D.H. Templeton, A. Zalkin, Inorg. Chem. 17 (1978)
2317-2319.
[37] P.L. Arnold, I.J. Casely, Z.R. Turner, C.D. Carmichael, Chemistry-a
European Journal. 14 (2008) 10415-10422.
[38] P.L. Arnold, S. Zlatogorsky, N.A. Jones, C.D. Carmichael, S.T. Liddle,
A.J. Blake, C. Wilson, Inorg. Chem. 47 (2008) 9042-9049.
[39] K.P. Carter, S.J.A. Pope, C.L. Cahill, Crystengcomm. 16 (2014)
1873-1884.
[40] J. Pouessel, P. Thuery, J. C. Berthet, T. Cantat, Dalton Trans. 43 (2014)
4415-4425.
[41] M. Zhang, Z. Liang, J. Ling, X. Ni, Z. Shen, Dalton Trans. 108 (2015)
1201–1208.
Appendix A. Supplementary material
CCDC
1519631-1519634
contain
the
supplementary
[42] X. Gu, X. Zhu, Y. Wei, S. Wang, S. Zhou, G. Zhang, X. Mu,
Organometallics. 33 (2014) 2372-2379.
crystallographic data for complexes 1a-2b.
[43] Y. Pan, T. Xu, Y. Ge, X. Lu, Organometallics. 30 (2011) 5687-5694.
[44] All geometries of intermediates and transition states (TSs) were
optimized using B3LY91 method. Hydrogen, oxygen, nitrogen and
silicon atoms were optimized under all electron 6-31g(d,p) basis.
Potassium atom was described under 6-31+g(d,p) basis. Yttrium atom
was represented using Stuttgart-Drensden pseudopotential with
adapted basis. Frequency calculations confirmed that the intermediate
had zero imaginary frequency. Natural bonding orbital (NBO) analysis
was employed to calculate atom charges and coordinate energies. All
calculations were performed using Gaussian 09 program.
Acknowledgements
The authors are grateful for the financial support from the
National Natural Science Foundation of China (No. 21674089).
We thank Dr. Jun Ling (Zhejiang University) for helpful
discussions.