LETTER
Stereoselective Synthesis of the Fully Functionalized HIJ-ring Framework of Ciguatoxin
607
TMS
H
O
O
O
O
H
H
H
H
H
39
a, b
c
TIPSO
NC
TIPSO
NC
Me
Me
H
O
O
H
H
O
O
O
OMe
O
OMe
H
H
H
H
H
H
BzO
BzO
H
30
32
31
Scheme 7 Homologation of the aldehyde via the epoxysilane. Reagents and conditions: a) sec-BuLi, TMSCH2Cl, CeCl3, TMEDA, THF,
–78 °C, 30 min; b) DBU, THF, r.t., 3 h; c) TfOH, THF, H2O, 79% in 3 steps (C39a:C39b>10:1).
condition for this particular system.20 The carbonyl group
(4) For the bioactivity of CTXs, see: (a) Lombert, A.; Bidard,
J.-N.; Lazdunski, M. FEBS Lett. 1987, 219, 355. (b) Lewis,
R. J.; Sellin, M.; Poli, M. A.; Norton, R. S.; Macleod, J. K.;
Sheil, M. M. Toxicon 1991, 29, 1115. (c)Dechraoui, M.-Y.;
Naar, J.; Pauillac, S.; Legrand, A.-M. Toxicon 1999, 37,
in 30 was transformed to the epoxysilane 31 via a chloro-
hydrin by treating with in situ generated chloro(trimethyl-
silyl)methylcerium and subsequent treatment with DBU.
The epoxysilane 31 was successfully converted into the
125. (d) Anger, T.; Madge, D.-J.; Mulla, M.; Riddall, D. J.
aldehyde 32 under the acidic condition. The present pro-
cedure requires only 3 steps to form the aldehyde having
preferable stereochemistry (>10:1) from the ketone, while
6 steps were employed in the previous method.
Med. Chem. 2001, 44, 115. (e) Lin, Y.-Y.; Risk, M.; Ray, S.
M.; Engen, D. V.; Clardy, J.; Golik, J.; James, J. C.;
Nakanishi, K. J. Am. Chem. Soc. 1981, 103, 6773.
(f) Shimizu, Y.; Chou, H.-N.; Bando, H.; Duyne, G. V.;
Clardy, J. C. J. Am. Chem. Soc. 1986, 108, 514.
In conclusion, we have achieved to establish an efficient
synthetic method for the construction of fully functional-
ized HIJ-ring framework based on the convergent strate-
gy. It proceeds with high stereochemical control at all
positions including thermodynamically driven adjustment
of syn-selective eight-membered I-ring cyclization and
six-membered H-ring formation via intramolecular 1,4-
addition reaction. Further studies toward the synthesis of
the right part of CTX along this line are now in progress.
(5) (a) Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama,
M.; Oguri, H.; Satake, M. Science 2001, 294, 1904.
(b) Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Org.
Lett. 2002, 4, 4551. (c) Tatami, A.; Inoue, M.; Uehara, H.;
Hirama, M. Tetrahedron Lett. 2003, 44, 5229.
(6) For recent synthetic studies of ciguatoxin in our laboratory,
see: (a) Saeeng, R.; Isobe, M. Heterocycles 2001, 54, 789.
(b) Kira, K.; Hamajima, A.; Isobe, M. Tetrahedron 2002, 58,
1875. (c) Takai, S.; Sawada, N.; Isobe, M. J. Org. Chem.
2003, 68, 3225. (d) Baba, T.; Huang, G.; Isobe, M.
Tetrahedron 2003, 59, 6851; and references therein.
(7) For a review of the Nicholas reaction, see: Teobald, B. J.
Tetrahedron 2002, 58, 4133.
Acknowledgment
(8) For construction of medium sized ether rings via acetylene
cobalt complexes in a highly stereoselective syn-trans
orientation, see: (a) Isobe, M.; Yenjai, C.; Tanaka, S. Synlett
1994, 11, 916. (b) Yenjai, C.; Isobe, M. Tetrahedron 1998,
54, 2509. (c) Isobe, M.; Hosokawa, S.; Kira, K. Chem. Lett.
1996, 473. (d) Isobe, M.; Nishizawa, R.; Hosokawa, S.;
Nishikawa, T. Chem. Commun. 1998, 2665.
This work was supported in part by the Grant of the 21st Century
COE program from the Ministry of Education, Sports, Science and
Technology (MEXT). We are grateful to Mr. Kitamura (analytical
laboratory in this school) for elemental analysis.
References
(9) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982,
104, 4976.
(1) For reviews, see: (a) Gillespie, N. C.; Lewis, R. J.; Pearn, J.;
Bourke, A. T. C.; Helms, M. J.; Bourke, J. B.; Shields, W. J.
Ned. J. Aust. 1986, 145, 584. (b) Yasumoto, T.; Murata, M.
Chem. Rev. 1993, 93, 1897. (c) Scheuer, P. J. Tetrahedron
1994, 50, 3. (d) Yasumoto, T. Chem. Rec. 2001, 1, 228.
(e) Lewis, R. J. Toxicon 2001, 39, 97.
(2) For the origin of CTXs, see: Yasumoto, T.; Nakajima, R.;
Bagnis, R.; Adachi, R. Nippon Suisan Gakkaishi 1977, 43,
1021.
(3) For the characterization of CTXs, see: (a) Scheuer, P. J.;
Takahashi, W.; Tsutsumi, J.; Yoshida, T. Science 1967, 155,
1267. (b) Tachibana, K. Ph.D. Thesis; University of Hawaii:
Hawaii, 1980. (c) Murata, M.; Legrand, A. M.; Ishibashi, Y.;
Yasumoto, T. J. Am. Chem. Soc. 1989, 111, 8929.
(d) Murata, M.; Legrand, A. M.; Yasumoto, T. Tetrahedron
Lett. 1989, 30, 3793. (e) Murata, M.; Legrand, A. M.;
Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc.
1990, 112, 4380. (f) Murata, M.; Legrand, A. M.; Scheuer,
P. J.; Yasumoto, T. Tetrahedron Lett. 1992, 33, 525.
(g) Satake, M.; Morohashi, A.; Oguri, H.; Oishi, T.; Hirama,
M.; Harada, N.; Yasumoto, T. J. Am. Chem. Soc. 1997, 119,
11325.
(10) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.;
Sabel, A. Angew. Chem., Int. Ed. Engl. 1962, 1, 80.
(11) Physical data for 7a. 1H NMR (400 MHz, CDCl3): d = 1.39
(1 H, q, J = 11.0 Hz, H-43a), 1.84 (1 H, br, -OH), 2.58 (1 H,
dd, J = 15.5, 9.0 Hz, H-40a), 2.61 (1 H, dt, J = 11.0, 4.0 Hz,
H-43b), 2.92 (1 H, dd, J = 15.5, 2.0 Hz, H-40b), 3.25–3.45
(4 H, m, H-41, H-42, H-44, H-45), 3.38 (3 H, s, -OCH3),
3.39 (3 H, s, -OCH3), 3.56 (1 H, dd, J = 10.5, 4.0 Hz, H-46a),
3.64 (1 H, dd, J = 10.5, 1.5 Hz, H-46b). HRMS (FAB) calcd
for C12H20F3O7S+ [M + H]+: 365.0882. Found: 365.0872.
(12) Physical data for 6. 1H NMR (300 MHz, CDCl3): d = 1.10,
1.11 (3 H, s, -CH3), 1.37, 1.38 [3 H, s, -C(CH3)2], 1.46 [3 H,
s, -C(CH3)2], 1.78–1.90 (total 1 H, m, H-35a), 1.95, 2.07
(total 1 H, ddd, J = 14.5, 5.0, 2.5 Hz and J = 14.5, 4.0, 2.0
Hz, H-35b), 2.50–2.61 (total 2 H, m, H-36, acetylene), 2.78,
2.84 (total 1 H, dd, J = 17.0, 3.5 Hz and J = 17.5, 3.0 Hz, H-
31), 3.03, 3.22 (total 1 H, br-s, -OH), 3.82, 4.10 (total 1 H,
dd, J = 10.0, 2.0 Hz and J = 10.0, 2.5 Hz, H-34), 4.22, 4.29
(total 1 H, dd, J = 9.5, 3.0 Hz and J = 9.0, 3.5 Hz, H-32),
4.64, 4.75 (total 1 H, m, H-36). Anal. Calcd for C13H19NO4:
C, 61.64; H, 7.56; N, 5.53. Found: C, 61.65; H, 7.51; N, 5.43.
Synlett 2004, No. 4, 603–608 © Thieme Stuttgart · New York