C O M M U N I C A T I O N S
Table 1. Geometric Parameters
compound Fe‚‚‚Fe (Å)
N-N bonds, it shows great promise for mimicking key features of
biological nitrogen fixation.
Fe−S−Fe (deg)
τa
0.16
1
3.5644(9)
3.8365(9)
3.4498(9)
101.70(7)
119.25(10)
101.50(6)
Acknowledgment. The authors are grateful for funding from
the University of Rochester and the A.P. Sloan Foundation (P.L.H.),
a Hooker Fellowship (J.V.), and the National Science Foundation
(E.M.). We thank Prof. Joe Dinnocenzo for the use of a GC
instrument.
1‚CH3CN
2
0.19 FeIII
0.10 FeII
0.31
1‚2Me2NNH2
1‚2NH3
4.1864(9)
3.9782(7)
4.1158(10)
2.60(2)
141.91(5)
126.56(5)
136.53(8)
71.2(4)
0.33
0.48
0.46
0.8-1.0
1.18
1‚2MeNHNH2
FeMoco2
Supporting Information Available: Synthetic, characterization,
structural, binding, and spectroscopic data (PDF and CIF). This material
basket clusters11
[(iPrNCOCH2)3N)Fe]- 17
2.6-2.8
74-76
a τ ) [∑( Lbasal-Fe-Lbasal) - ∑( Lbasal-Fe-Laxial)]/90. See the
Supporting Information for details.
References
(1) (a) Burgess, B. K.; Lowe, D. J. Chem. ReV. 1996, 96, 2893. (b) Holland,
P. L. In ComprehensiVe Coordination Chemistry 2; McCleverty, J. A.,
Meyer, T. J., Eds.; Elsevier: New York, 2003; Vol. 8, pp 569-599. (c)
Seefeldt, L. C.; Dance, I.; Dean, D. R. Biochemistry 2004, 43, 1401-
1409.
(2) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.;
Howard, J. B.; Rees, D. C. Science 2002, 297, 1696.
The negative charge on the ligand is evident from the planar
R-nitrogen (sum of angles 359.9 ( 1.0°). The rhombic EPR
spectrum (Figure 3c) suggests an antiferromagnetically coupled
1
system with an S ) /2 ground state. The Mo¨ssbauer spectrum
(3) Ab initio calculations support X as nitrogen. (a) Lovell, T.; Liu, T.; Case,
D. A.; Noodleman, L. J. Am. Chem. Soc. 2003, 125, 8377. (b) Dance, I.
Chem. Commun. 2003, 324. (c) Hinnemann, B.; Nørskov, J. K. J. Am.
Chem. Soc. 2003, 125, 1466. (d) Cao, Z.; Zhou, Z.; Wan, H. Zhang, Q.;
Thiel, W. Inorg. Chem. 2003, 42, 6986. (e) Schimpl, J.; Petrilli, H. M.;
Blo¨chl, P. E. J. Am. Chem. Soc. 2003, 125, 15772.
(4) (a) Benton, P. M. C.; Christiansen, J.; Dean, D. R.; Seefeldt, L. C. J. Am.
Chem. Soc. 2001, 123, 1822. (b) Christiansen, J.; Dean, D. R.; Seefeldt,
L. C. Annu. ReV. Plant Physiol. Plant Mol. Biol. 2001, 52, 269. (c) Benton,
P. M. C.; Laryukhin, M.; Mayer, S. M.; Hoffman, B. M.; Dean, D. R.;
Seefeldt, L. C. Biochemistry 2003, 42, 9102.
(5) (a) Schneider, K.; Gollan, U.; Dro¨ttboom, M.; Selsemeier-Voigt, S.; Mu¨ller,
A. Eur. J. Biochem. 1997, 244, 789. (b) Krahn, E.; Weiss, B. J. R.;
Krockel, M.; Groppe, J.; Henkel, G.; Cramer, S. P.; Trautwein, A. X.;
Schneider, K.; Mu¨ller, A. J. Biol. Inorg. Chem. 2002, 7, 37.
(6) Vrajmasu, V.; Mu¨nck, E.; Bominaar, E. L. Inorg. Chem. 2003, 42, 5974.
(7) Lee, H.; Benton, P. M. C.; Laryukhin, M.; Igarashi, R. Y.; Dean, D. R.;
Seefeldt, L. C.; Hoffman, B. M. J. Am. Chem. Soc. 2003, 125, 5604.
(8) (a) Barrie´re, F. Coord. Chem. ReV. 2003, 236, 71. (b) Lee, S. C.; Holm,
R. H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3595.
(Figure 3d) of solid 2 reveals valence-trapped iron(II) (∆EQ ) 1.93
mm/s, δ ) 0.82 mm/s) and iron(III) (∆EQ ) 0.74 mm/s, δ ) 0.41
mm/s) sites (Figure 3c). Studies in applied fields up to 7.0 T show
that the components of the 57Fe magnetic hyperfine tensors of the
ferric and ferrous sites are negative and positive, respectively,
consistent with antiferromagnetic coupling.15
Interestingly, the reaction that gives 2 requires 1.4 ( 0.2 equiv
of phenylhydrazine, and aniline (GC/MS) and ammonia (up to 0.5
equiv detected by the indophenol method) are produced. A balanced
equation for the formation of 2 consistent with these observations
is shown in eq 1.
2(1) + 3PhNHNH2 f 2(2) + PhNH2 + NH3
(1)
(9) (a) Power, P. P.; Shoner, S. C. Angew. Chem., Int. Ed. Engl. 1991, 30,
330. (b) MacDonnell, F. M.; Ruhlandt-Senge, K.; Ellison, J. J.; Holm, R.
H.; Power, P. P. Inorg. Chem. 1995, 34, 1815.
Therefore, N-N single bonds are cleaved by the diiron(II) sulfide
complex. Cleavage of hydrazine N-N bonds is well-known for
metals in groups 4-6,16 and some ruthenium examples exist,16c
but there is only one example for iron.16d Interestingly, Fe3MoS4
clusters catalytically reduce hydrazine, but the Fe4S4 analogues are
inactive.16e
(10) This complex is very similar to one we have reported recently: Smith, J.
M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.;
Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001, 123, 9222.
(11) (a) Ogino, H.; Inomata, S.; Tobita, H. Chem. ReV. 1998, 98, 2093. (b)
Holm, R. H. In ComprehensiVe Coordination Chemistry 2; McCleverty,
J. A., Meyer, T. J., Eds.; Elsevier: New York, 2003; Vol. 8, pp 61-90.
(12) (a) Mukherjee, R. N.; Stack, T. D. P.; Holm, R. H. J. Am. Chem. Soc.
1988, 110, 1851. (b) Dorfman, J. R.; Girerd, J. J.; Stack, T. D. P.; Holm,
R. H. Inorg. Chem. 1984, 23, 4407. (c) Berno, P.; Floriani, C.; Chiesi-
Villa, A.; Guastini, C. J. Chem. Soc., Dalton Trans. 1989, 551. (d) Corazza,
F.; Floriani, C. J. Chem. Soc., Dalton Trans. 1987, 709. (e) Berno, P.;
Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc., Dalton Trans.
1989, 551.
(13) Mo¨ssbauer spectra recorded in applied fields show that the ground state
of 1, in the solid as well as in solution, is diamagnetic. However, the
ground state has a small paramagnetic admixture, indicated by a positive
hyperfine field of 0.3-0.5 T that is independent of temperature between
1.5 and 140 K. Mo¨ssbauer studies of mononuclear Fe(II) diketiminate
complexes by Andres et al. have revealed essentially unquenched orbital
Because the key “belt” sites of the FeMoco appear to be distorted
from tetrahedral toward a trigonal pyramidal17 geometry, it is of
interest to quantify pyramidal distortions of tetrahedral iron(II) in
these synthetic compounds. In Table 1, we introduce a normalized
measure of pyramidalization τ, which describes the distortion of
tetrahedral coordination along a pseudo-C3 axis (τ ) 0 for
tetrahedron, τ ) 1 for trigonal pyramid with flat base). As expected,
the FeMoco belt iron atoms are fairly pyramidalized (τ ) 0.46 (
0.03). The iron sites in FeS clusters are tetrahedral (τ e 0.3), except
for the “basket” clusters and close relatives (see the Supporting
Information).11 The iron atoms in 1‚CH3CN and 2 are nearly
tetrahedral (τ ) 0.10-0.19), but the alkylhydrazine and ammonia
adducts of 1 are substantially pyramidalized (τ ) 0.31-0.48).
Thus, the belt iron atoms of FeMoco have significant pyramidal
distortion, and this work shows that comparable distortions can be
achieved in synthetic complexes without the aid of constraining
ligands. The adducts of 1 have τ values that do not correlate with
ligand size, suggesting that pyramidalization may be electronically
controlled. The diketiminate-supported FeSFe core is quite flexible,
with Fe‚‚‚Fe distances ranging from 3.45 to 4.19 Å and Fe-S-Fe
angles varying from 101.5° to 141.9°. Theoretical studies indicate
that diketiminate ligands have “soft” electronic properties commonly
associated with sulfide/thiolate ligands.13,18 Because the synthetic
sulfide complex described here binds nitrogen donors and cleaves
angular momentum and very large zero-field splittings, |D| > 100 cm-1
.
A realistic spin coupling model will have to take these unusual features
into account. See: Andres, H.; Bominaar, E.; Smith, J. M.; Eckert, N.
A.; Holland, P. L.; Mu¨nck, E. J. Am. Chem. Soc. 2002, 124, 3012.
(14) Hydrazine can be released from nitrogenase during turnover. (a) Thorneley,
R. N. F.; Lowe, D. J. In Molybdenum Enzymes; Spiro, T. G., Ed.; Wiley:
New York, 1985; pp 221-284. (b) Wilson, P. E.; Nyborg, A. C.; Watt,
G. D. Biophys. Chem. 2001, 91, 281.
(15) Mu¨nck, E. In Physical Methods in Bioinorganic Chemistry; Que, L., Jr.,
Ed.; University Science Books: Sausalito, CA, 2000; pp 287-320.
(16) (a) Hidai, M.; Mizobe, Y. Chem. ReV. 1995, 95, 1115. (b) Fryzuk, M. D.;
Johnson, S. A. Coord. Chem. ReV. 2000, 200-202, 379. (c) Kuwata, S.;
Mizobe, Y.; Hidai, M. Inorg. Chem. 1994, 33, 3619. (d) Verma, A. K.;
Lee, S. C. J. Am. Chem. Soc. 1999, 121, 10838. (e) Coucouvanis, D. J.
Biol. Inorg. Chem. 1996, 1, 594.
(17) Complete pyramidalization has been observed with a constrained ligand:
Ray, M.; Golombek, A.; Hendrich, M. P.; Young, V. G.; Borovik, A. S.
J. Am. Chem. Soc. 1996, 118, 6084.
(18) Randall, D. W.; DeBeer George, S.; Holland, P. L.; Hedman, B.; Hodgson,
K. O.; Tolman, W. B.; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 11632.
JA049417L
9
J. AM. CHEM. SOC. VOL. 126, NO. 14, 2004 4523