Journal of the American Chemical Society
Article
̈
(9) Weitz, E.; Scheffer, A. Uber die Einwirkung von alkalischem
Sciences. M.F.M. gratefully acknowledges an NSF Graduate
Research Fellowship. We thank Dr. Brandie Ehrmann (UNC
Mass Spectrometry Core Laboratory) for assistance with mass
spectrometry experiments on instrumentation acquired
through the NSF MRI program under Award CHE-1726291.
We also thank the UNC Research Computing Center for
access to its facilities to perform the DFT calculations.
Professor Marcey Waters (UNC), Dr. Steffen Good (UNC),
and Dr. Samuel Bartlett (UNC) are acknowledged for helpful
discussions. X-ray crystallography was performed by Dr. Blane
Zavesky (UNC).
̈
Wasserstoffsuperoxyd auf ungesattigte Verbindungen. Ber. Dtsch.
Chem. Ges. B 1921, 54, 2327.
(10) For excellent reviews on QMs, see: (a) Willis, N. J.; Bray, C. D.
ortho-Quinone Methides in Natural Product Synthesis. Chem. - Eur. J.
2012, 18, 9160. (b) Bai, W.; David, J. G.; Feng, Z.; Weaver, M.; Wu,
K.; Pettus, T. R. R. The Domestication of ortho-Quinone Methides.
Acc. Chem. Res. 2014, 47, 3655. (c) Caruana, L.; Fochi, M.; Bernardi,
L. The Emergence of Quinone Methides in Asymmetric Organo-
catalysis. Molecules 2015, 20, 11733. (d) Singh, M. S.; Nagaraju, A.;
Anand, N.; Chowdhury, S. ortho-Quinone methide (o-QM): a highly
reactive, ephemeral and versatile intermediate in organic synthesis.
RSC Adv. 2014, 4, 55924.
(11) Spence, J. T. J.; George, J. H. Total Synthesis of Peniphenones
A−D via Biomimetic Reactions of a Common o-Quinone Methide
Intermediate. Org. Lett. 2015, 17, 5970.
(12) Guo, W.; Wu, B.; Zhou, X.; Chen, P.; Wang, X.; Zhou, Y.; Liu,
Y.; Li, C. Formal Asymmetric Catalytic Thiolation with a Bifunctional
Catalyst at a Water−Oil Interface: Synthesis of Benzyl Thiols. Angew.
Chem., Int. Ed. 2015, 54, 4522.
(13) For examples of nucleophilic addition to stable pQMs resulting
in dearomatized products, see: (a) Yuan, Z.; Fang, X.; Wu, J.; Hequan,
Y.; Lin, A. 1,6-Conjugated Addition-Mediated [2 + 1] Annulation:
Approach to Spiro[2.5]octa-4,7-dien-6-one. J. Org. Chem. 2015, 80,
11123. (b) Ma, C.; Huang, Y.; Zhao, Y. Stereoselective 1,6-Conjugate
Addition/Annulation of para-Quinone Methides with Vinyl Epox-
ides/Cyclopropanes. ACS Catal. 2016, 6, 6408. (c) Roiser, L.; Waser,
M. Enantioselective Spirocyclopropanation of para-Quinone Me-
thides Using Ammonium Ylides. Org. Lett. 2017, 19, 2338.
(14) (a) Toteva, M. M.; Richard, J. P. The Generation and
Reactions of Quinone Methides. Adv. Phys. Org. Chem. 2011, 45, 39.
(b) Jaworski, A. A.; Scheidt, K. A. Emerging Roles of in Situ
Generated Quinone Methides in Metal-Free Catalysis. J. Org. Chem.
2016, 81, 10145.
REFERENCES
■
(1) (a) Vo, N. T.; Pace, R. D. M.; O’Har, F.; Gaunt, M. An
Enantioselective Organocatalytic Oxidative Dearomatization Strategy.
J. Am. Chem. Soc. 2008, 130, 404. (b) Jackson, S. K.; Wu, K.; Pettus,
T. R. R. Sequential Reactions Initiated by Oxidative Dearomatization.
Biomimicry or Artifact? In Biomimetic Organic Synthesis; Poupon, E.,
Nay, B., Ed.; Wiley-VCH Verlag & Co.: Weinheim, Germany, 2011;
pp 723−749. (c) Roche, S. P.; Porco, J. A. Dearomatization Strategies
in the Synthesis of Complex Natural Products. Angew. Chem., Int. Ed.
2011, 50, 4068.
(2) (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis;
Academic Press, Inc.: San Diego, CA, 1997. (b) Feldman, K. S.
Cyclization Pathways of a (Z)-Stilbene-Derived Bis(orthoquinone
monoketal). J. Org. Chem. 1997, 62, 4983. (c) Tchounwou, P. B.;
Yedjou, C. G.; Patolla, A. K.; Sutton, D. J. Heavy metal toxicity and
the environment. EXS 2012, 101, 133.
(3) Dong, S.; Zhu, J.; Porco, J. A. Enantioselective Synthesis of
Bicyclo[2.2.2]octenones Using a Copper-Mediated Oxidative Dear-
omatization/[4 + 2] Dimerization Cascade. J. Am. Chem. Soc. 2008,
130, 2738.
(4) (a) Goti, A.; Cardona, F. Hydrogen Peroxide in Green Oxidation
Reactions: Recent Catalytic Processes. In Green Chemical Reactions;
Tundo, P., Esposito, V., Eds.; Springer: Dordrecht, The Netherlands,
2008; pp 191−212. (b) Tsuji, T.; Zaoputra, A. A.; Hitomi, Y.; Mieda,
K.; Ogura, T.; Shiota, Y.; Yoshizawa, K.; Sato, H.; Kodera, M. Specific
Enhancement of Catalytic Activity by a Dicopper Core: Selective
Hydroxylation of Benzene to Phenol with Hydrogen Peroxide. Angew.
Chem., Int. Ed. 2017, 56, 7779.
(15) Jurd, L. Quinones and quinone-methidesI: Cyclization and
dimerisation of crystalline ortho-quinone methides from phenol
oxidation reactions. Tetrahedron 1977, 33, 163.
(16) Due to the propensity of spiroepoxydienones to dimerize,6,20
3,6-dimethylsalicyl alcohol (1) was selected as a model substrate since
dimerization of 4a is slow and the monomer is stable for long
periods.5
(17) See the Supporting Information for detailed optimization of the
racemic oxidative dearomatization reaction.
(5) Good, S. N.; Sharpe, R. J.; Johnson, J. S. Highly Functionalized
Tricyclic Oxazinanones via Pairwise Oxidative Dearomatization and
N-Hydroxycarbamate Dehydrogenation: Molecular Diversity Inspired
by Tetrodotoxin. J. Am. Chem. Soc. 2017, 139, 12422.
(18) Weinert, E. E.; Dondi, R.; Colloredo-Melz, S.; Frankenfield, K.
N.; Mitchell, C. H.; Freccero, M.; Rokita, S. E. Substituents on
Quinone Methides Strongly Modulate Formation and Stability of
Their Nucleophilic Adducts. J. Am. Chem. Soc. 2006, 128, 11940.
(19) (a) Wan, P.; Hennig, D. Photocondensation of o-hydroxybenzyl
alcohol in an alkaline medium: synthesis of phenol−formaldehyde
resins. J. Chem. Soc., Chem. Commun. 1987, 939. (b) Chiang, Y.;
Kresge, A. J.; Zhu, Y. Flash Photolytic Generation of ortho-Quinone
Methide in Aqueous Solution and Study of Its Chemistry in that
Medium. J. Am. Chem. Soc. 2001, 123, 8089.
(20) For structural orientation of dimers, see: (a) Adler, E.;
Holmberg, K.; et al. Periodate Oxidation of Phenols. X. Structural and
Steric Orientation in the Diels-Alder Dimerization of o-Quinols. Acta
Chem. Scand. 1971, 25, 2775. (b) Adler, E.; Holmberg, K.; et al. Diels-
Alder Reactions of 2,4-Cyclohexadienones. I. Structural and Steric
Orientation in the Dimerisation of 2,4-Cyclohexadienones. Acta
Chem. Scand. 1974, 28b, 465.
(21) For excellent examples of base-promoted asymmetric reactions
involving oQMs lacking methide substitution, see: (a) Izquierdo, J.;
Orue, A.; Scheidt, K. A. A Dual Lewis Base Activation Strategy for
Enantioselective Carbene-Catalyzed Annulations. J. Am. Chem. Soc.
2013, 135, 10634. (b) Lee, A.; Scheidt, K. A. N-Heterocyclic carbene-
catalyzed enantioselective annulations: a dual activation strategy for a
formal [4 + 2] addition for dihydrocoumarins. Chem. Commun. 2015,
51, 3407. (c) Zhu, Y.; Zhang, L.; Luo, S. Asymmetric Retro-Claisen
(6) (a) Adler, E.; Brasen, S.; Miyake, H. Periodate Oxidation of
Phenols. IX. Oxidation of o-(omega-Hydroxyalkyl)phenols. Acta
Chem. Scand. 1971, 25, 2055. (b) See the Supporting Information
for a photochemical stability study of o-spiroepoxydienones.
(7) (a) Bruno, M.; Omar, A. A.; Perales, A.; Piozzi, F.; Rodriguez, B.;
Savona, G.; de la Torre, M. C. Neo-clerodane diterpenoids from
Teucrium oliverianum. Phytochemistry 1991, 30, 275. (b) Kupchan, S.
M.; Court, W. A.; Dailey, R. G., Jr.; Gilmore, C. J.; Bryan, R. F. Tumor
inhibitors. LXXIV. Triptolide and tripdiolide, novel antileukemic
diterpenoid triepoxides from Tripterygium wilfordii. J. Am. Chem. Soc.
1972, 94, 7194. (c) Sperry, S.; Samuels, G. J.; Crews, P. Vertinoid
Polyketides from the Saltwater Culture of the Fungus Trichoderma
longibrachiatum Separated from a Haliclona Marine Sponge. J. Org.
Chem. 1998, 63, 10011.
(8) (a) Corey, E. J.; Dittami, J. P. Total synthesis of ( )-ovalicin. J.
Am. Chem. Soc. 1985, 107, 256. (b) Shair, M. D.; Danishefsky, S. J.
Observations in the Chemistry and Biology of Cyclic Enediyne
Antibiotics: Total Syntheses of Calicheamicin γ1I and Dynemicin A. J.
Org. Chem. 1996, 61, 16. (c) Singh, V. Spiroepoxycyclohexa-2,4-
dienones in Organic Synthesis. Acc. Chem. Res. 1999, 32, 324.
(d) Yang, D.; Ye, X.; Xu, M. Enantioselective Total Synthesis of
(−)-Triptolide, (−)-Triptonide, (+)-Triptophenolide, and (+)-Trip-
toquinonide. J. Org. Chem. 2000, 65, 2208.
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX