2564
V. R. Gopal et al. / Tetrahedron Letters 45 (2004) 2563–2565
Schwartzman, M. Biochem. Biophys. Res. Commun. 1988,
and 11 furnished methyl 19(R)-hydroxyeicosa-
9
5(Z),8(Z),11(Z),14(Z)-tetraenoate4c (10) and methyl 20-
hydroxyeicosa-5(Z),8(Z),11(Z),14(Z)-tetraenoate4g (12),
respectively. Saponification (NaOH, THF/H2O, 23 °C,
6–8 h, 94–98%) of the foregoing esters and extractive
isolation gave free acids (R)-1, (R)-2, and 3 as colorless
oils identical in all respects with authentic material.4
152, 1269; (d) Falck, J. R.; Sun, L.; Lee, S. G.; Heckmann,
B.; Mioskowski, C.; Karara, A.; Capdevila, J. Tetrahedron
Lett. 1992, 33, 4893; (e) Perrier, H.; Prasit, P.; Wang, Z.
Tetrahedron Lett. 1994, 35, 1501; (f) Heckmann, B.;
Mioskowski, C.; Lumin, S.; Falck, J. R.; Wei, S.;
Capdevila, J. H. Tetrahedron Lett. 1996, 37, 1425; (g)
Yu, M.; Alonso-Galicia, M.; Sun, C.-W.; Roman, R. J.;
Ono, N.; Hirano, H.; Ishimoto, T.; Reddy, Y. K.;
Katipally, K. R.; Reddy, K. M.; Gopal, V. R.; Yu, J.;
Takhi, M.; Falck, J. R. Bioorg. Med. Chem. 2003, 11,
2803.
2-Deoxy-a-D-glucosides 15 and 16 (Eq. 1) were conve-
niently accessed via Ph3PÆHBr catalyzed11 addition of
( )-1-penten-3-ol (13) to commercial 3,4,6-tri-O-benzyl-
5. Alternative approaches: (a) chromatographic resolution,
Oliw, E. H. J. Chromatogr. 1990, 526, 525; (b) Enzymatic
incubation, Prabhune, A.; Fox, S. R.; Ratledge, C.
Biotechnol. Lett. 2002, 24, 1041; (c) Polyacetylene alkyl-
ation, Romanov, S. G.; Ivanov, I. V.; Groza, N. V.; Kuhn,
H.; Myagkova, G. I. Tetrahedron 2002, 58, 8483.
D
-glucal (14) and chromatographic separation of the
diastereomers over silica gel [EtOAc/hexane (15:85),
Rf ꢀ 0:53 and 0.46, respectively].
6. Ryan, W. J.; Banner, K. W.; Wiley, J. L.; Martin, B. R.;
Razdan, R. K. J. Med. Chem. 1997, 40, 3617.
7. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769.
8. Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. J.
Org. Chem. 1996, 61, 5716.
9. Physical and spectral data for 5: 1H NMR (CDCl3,
400 MHz) d 6.36 (t, 1H, J ¼ 7:3 Hz), 5.54–5.30 (m, 6H),
3.67 (s, 3H), 2.92–2.78 (m, 6H), 2.32 (t, 2H, J ¼ 7:3 Hz),
2.18–2.06 (m, 2H), 1.71 (quintet, 2H, J ¼ 7:3 Hz); 13C
NMR (CDCl3, 75 MHz) d 174.11, 136.68, 130.45, 129.19,
128.82, 128.76, 127.63, 124.31, 89.50, 51.62, 33.55, 31.54,
26.71, 25.92, 25.78, 24.89. 6: 1H NMR (CDCl3, 400 MHz)
d 6.17 (dt, J ¼ 1:5, 7.0 Hz, 1H) 6.07 (ddd, J ¼ 7:0, 7.0,
7.0 Hz, 1H), 5.50–5.32 (m, 6H), 3.66 (s, 3H), 2.98 (t,
J ¼ 6:4 Hz, 2H), 2.86 (t, J ¼ 6:1 Hz, 2H), 2.81 (t,
J ¼ 5:4 Hz, 2H), 2.32 (t, J ¼ 7:3 Hz, 2H), 2.18–2.06 (m,
2H), 1.70 (quintet, J ¼ 7:3 Hz, 2H); 13C NMR (CDCl3,
75 MHz) d 173.96, 133.02, 129.75, 129.09, 128.85, 128.48,
ð1Þ
Olefins 19 and 20 were prepared in excellent yields by
silylation of commercial (R)-())-4-penten-2-ol (17,
Aldrich Chem. Co.) and 4-penten-1-ol (18), respectively,
using standard reaction conditions (Eq. 2).
ð2Þ
127.83, 125.54, 108.05, 51.49, 33.46, 28.38, 26.63, 25.84,
23
D
25.70, 24.83. 7: ½aꢁ +45.44 (c 1.25, CHCl3); 1H NMR
Enantiomers (S)-1 and (S)-2 were obtained analogously
and in comparable yields from 16 and (S)-(+)-4-penten-
2-ol (Aldrich Chem. Co.), respectively.
(CDCl3, 400 MHz) d 7.35–7.25 (m, 13H), 7.18–7.16 (m,
2H), 5.40–5.30 (m, 8H), 5.04 (d, J ¼ 3:0 Hz, 1H), 4.88 (d,
J ¼ 10:9 Hz, 1H), 4.69–4.62 (m, 3H), 4.50 (dd, J ¼ 10:6,
5.8 Hz, 2H), 4.01–3.95 (m, 1H), 3.86 (br d, J ¼ 9:4 Hz,
1H), 3.79 (dd, J ¼ 10:3, 3.6 Hz, 1H), 3.65 (s, 3H), 3.64–
3.51 (m, 3H), 2.84–2.70 (m, 6H), 2.31 (t, J ¼ 7:6 Hz, 2H),
2.24 (dd, J ¼ 12:8, 4.9 Hz, 1H), 2.12–2.04 (m, 4H), 1.76–
1.66 (m, 3H), 1.57–1.49 (m, 4H), 0.87 (t, J ¼ 7:3 Hz, 3H);
13C NMR (CDCl3, 75 MHz) d 174.14, 138.90, 138.67,
138.32, 130.01, 129.10, 128.94, 128.48, 128.44, 128.32,
128.25, 128.18, 128.12, 127.98, 127.71, 127.63, 96.60,
78.58, 78.27, 77.93, 75.12, 73.58, 71.90, 71.15, 69.05,
Acknowledgements
Supported financially by the USPHS NIH (GM37922
and 31278) and the Robert A. Welch Foundation.
51.60, 36.16, 33.54, 32.72, 30.51, 27.45, 26.66, 25.75, 24.89,
23
References and notes
22.95, 10.04. Adduct of 6 with 16: ½aꢁ +57.1(c 0.9,
CHCl3); 1H NMR (CDCl3, 400 MHz) dD 7.38–7.22 (m,
13H), 7.20–7.14 (m, 2H), 5.46–5.27 (m, 8H), 5.08 (d,
J ¼ 2:7 Hz, 1H), 4.89 (d, J ¼ 10:6 Hz, 1H), 4.61–4.71 (m,
3H), 4.50 (dd, J ¼ 10:3, 8.8 Hz, 2H), 4.04–3.94 (m, 1H),
3.88–3.83 (m,1H), 3.80 (dd, J ¼ 10:3, 3.6 Hz, 1H), 3.66 (s,
3H), 3.65–3.55 (m, 3H), 2.88–2.72 (m, 6H), 2.32 (t,
J ¼ 7:6 Hz, 2H), 2.24 (dd, J ¼ 12:8, 4.9 Hz, 1H), 2.18–
2.02 (m, 4H), 1.76–1.66 (m, 3H), 1.62–1.44 (m, 4H), 0.87
(t, J ¼ 7:3 Hz, 3H); 13C NMR (CDCl3, 75 MHz) d 174.13,
138.89, 138.69, 138.29, 130.01, 129.05, 128.96, 128.51,
128.47, 128.42, 128.33, 128.26, 128.12, 128.04, 128.03,
127.98, 127.70, 127.68, 127.65, 127.61, 95.98, 78.54, 77.93,
77.34, 75.06, 73.56, 71.90, 71.22, 69.01, 51.59, 36.06, 34.10,
1. Review: Capdevila, J. H.; Harris, R. C.; Falck, J. R. Cell.
Mol. Life Sci. 2002, 59, 780.
2. (a) Ito, O.; Roman, R. J. Hypertension 1999, 33, 419; (b)
Silverstein, D. M.; Barac-Nieto, M.; Falck, J. R.; Spitzer,
A. Prost. Leuk. Essent. Fat. Acids 1998, 58, 209; (c) Zou,
A. P.; Drummond, H. A.; Roman, R. J. Prost. Leuk.
Essent. Fat. Acids 1996, 27, 631; (d) Macica, C.; Balazy,
M.; Falck, J. R.; Mioskowski, C.; Carroll, M. A. Am. J.
Physiol. 1993, 265, G735.
3. (a) Roman, R. J. Physiol. Rev. 2002, 82, 131–185; (b)
Carroll, M. A.; Balazy, M.; Margiotta, P.; Huang, D.-D.;
Falck, J. R.; McGiff, J. C. Am. J. Physiol. 1996, 271, R863.
4. (a) Manna, S.; Falck, J. R.; Chacos, N.; Capdevila, J.
Tetrahedron Lett. 1983, 24, 33; (b) Corey, E. J.; Iguchi, S.;
Albright, J. O.; De, B. Tetrahedron Lett. 1983, 24, 37; (c)
Escalante, B.; Falck, J. R.; Yadagiri, P.; Sun, L.; Laniado-
33.52, 32.17, 26.65, 26.35, 25.71, 25.47, 24.88, 23.52, 22.12,
23
D
9.18. 9: ½aꢁ +16.5 (c 1.25 CHCl3); 1H NMR (CDCl3,
400 MHz) d 7.68–7.66 (m, 4H), 7.43–7.34 (m, 6H), 5.40–
5.30 (m, 8H), 3.84 (sextet, J ¼ 5:8 Hz, 1H), 3.66 (s, 3H),