F
A. Yanagisawa, A. Kawada
Letter
Synlett
M.; Corrêa, R. J.; Violante, F. A.; Pinto, A. C.; Kaptein, B.;
Broxterman, Q. B.; Garden, S. J.; Tomasini, C. Tetrahedron 2006,
62, 12017. (e) Malkov, A. V.; Kabeshov, M. A.; Bella, M.; Kysilka,
O.; Malyshev, D. A.; Pluháčková, K.; Kočovský, P. Org. Lett. 2007,
9, 5473. (f) Nakamura, S.; Hara, N.; Nakashima, H.; Kubo, K.;
Shibata, N.; Toru, T. Chem. Eur. J. 2008, 14. 8079. (g) Hara, N.;
Nakamura, S.; Shibata, N.; Toru, T. Chem. Eur. J. 2009, 15, 6790.
(h) Itoh, T.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2009, 11, 3854.
(i) Hara, N.; Nakamura, S.; Shibata, N.; Toru, T. Adv. Synth. Catal.
2010, 352, 1621. (j) Hara, N.; Nakamura, S.; Funahashi, Y.;
Shibata, N. Adv. Synth. Catal. 2011, 353, 2976. (k) Liu, Y.-L.; Zhou,
J. Chem. Commun. 2012, 48, 1919. (l) Xue, F.; Zhang, S.; Liu, L.;
Duan, W.; Wang, W. Chem. Asian J. 2009, 4, 1664. (m) Guo, Q.;
Bhanushali, M.; Zhao, C.-G. Angew. Chem. Int. Ed. 2010, 49, 9460.
(n) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am.
Chem. Soc. 2010, 132, 15328. (o) Guang, J.; Guo, Q.; Zhao, C.-G.
Org. Lett. 2012, 14, 3174. (p) Liu, Y.; Gao, P.; Wang, J.; Sun, Q.;
Ge, Z.; Li, R. Synlett 2012, 23, 1031. (q) Mao, Z.; Zhu, X.; Lin, A.;
Li, W.; Shi, Y.; Mao, H.; Zhu, C.; Cheng, Y. Adv. Synth. Catal. 2013,
355, 2029. (r) Suh, C. W.; Chang, C. W.; Choi, K. W.; Lim, Y. J.;
Kim, D. Y. Tetrahedron Lett. 2013, 54, 3651. (s) Abbaraju, S.;
Zhao, J. C.-G. Adv. Synth. Catal. 2014, 356, 237. (t) Cañellas, S.;
Alonso, P.; Pericàs, M. À. Org. Lett. 2018, 20, 4806. (u) Li, Y.-L.;
Wang, X.-L.; Xiao, D.; Liu, M.-Y.; Du, Y.; Deng, J. Adv. Synth. Catal.
2018, 360, 4147. (v) Wang, J.; Deng, Z.-X.; Wang, C.-M.; Xia, P.-J.;
Xiao, J.-A.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Org. Lett. 2018, 20,
7535. (w) Zhang, D.; Chen, Y.; Cai, H.; Yin, L.; Zhong, J.; Man, J.;
Zhang, Q.-F.; Bethi, V.; Tanaka, F. Org. Lett. 2020, 22, 6. (x) Yang,
X.; Majhi, P. K.; Chai, H.; Liu, B.; Sun, J.; Liu, T.; Liu, Y.; Zhou, L.;
Xu, J.; Liu, J.; Wang, D.; Zhao, Y.; Jin, Z.; Chi, Y. R. Angew. Chem.
Int. Ed. 2021, 60, 159.
Entry 4 in Table 3, and Entry 2 in Table 4)
A mixture of AgOTf (20.6 mg, 0.08 mmol) and (R)-DM-BINAP
(29.4 mg, 0.04 mmol) was dissolved in dry THF (6 mL) under an
argon atmosphere with direct light excluded and stirred at
room temperature for 20 min. To the resulting solution were
added MeOH (40.6 L, 1.0 mmol) and (i-Pr)2NEt (17 L, 0.10
mmol) successively at –40 °C. The mixture was stirred at that
temperature for 5 min. Then, alkenyl trifluoroacetate 1a (181.6
mg, 0.75 mmol) and isatin derivative 2d (118.6 mg, 0.5 mmol)
were successively added drop by drop to the resulting solution
at –40 °C. After stirring for 30 min at that temperature, the
mixture was treated with MeOH (3 mL). Then, the mixture was
filtered with a glass filter funnel filled with Celite® and washed
with EtOAc, and the combined filtrate and washes were concen-
trated in vacuo. The residual crude product was purified by
column chromatography on silica gel to give corresponding -
hydroxy ketone 3ad (191.7 mg, >99% yield). The anti/syn ratio
was determined to be 75:25 by 1H NMR analysis. The enantio-
meric ratio of the anti isomer was determined to be 98% ee by
HPLC analysis using a chiral column [Daicel Chiralpak AD-3,
hexane–i-PrOH (4:1), flow rate = 1.0 mL/min]: t1 = 36.0 min
(major), t2 = 47.1 min (minor). The enantiomeric ratio of the syn
isomer was determined to be 6% ee by HPLC analysis using a
chiral column [Daicel Chiralpak AD-3, hexane–i-PrOH (4:1),
flow rate = 1.0 mL/min]: t1 = 23.1 min (minor), t2 = 28.7 min
(major).
Spectral Data of the Product
anti Isomer
1H NMR (400 MHz, CDCl3): = 8.10 (dd, J = 8.0, 1.2 Hz, 1 H), 7.49
(td, J = 7.5, 1.4 Hz, 1 H), 7.41 (dd, J = 7.3, 0.8 Hz, 1 H), 7.18–7.35
(m, 8 H), 7.06 (td, J = 7.5, 0.8 Hz, 1 H), 6.71 (d, J = 7.9 Hz, 1 H),
6.23 (s, 1 H), 4.87 (dd, J = 29.8, 15.7 Hz, 2 H), 3.21 (dd, J = 13.2,
4.7 Hz, 1 H), 2.83–2.98 (m, 2 H), 1.80–1.97 (m, 2 H). 13C NMR
(100 MHz, CDCl3): = 199.8, 176.8, 143.9, 143.6, 135.5, 134.1,
132.5, 130.0, 128.7 (2 C), 128.6, 128.4, 127.9, 127.6, 127.3 (2 C),
127.0, 123.9, 123.2, 109.5, 78.3, 51.6, 43.8, 28.9, 24.2. IR (neat):
3300, 2959, 1681, 1614, 1496, 1467, 1433, 1389, 1358, 1321,
1264, 1221, 1183, 1156, 1073, 1015, 998, 932 cm–1. MS (ESI):
m/z calcd for [C25H21O3NNa]+ ([M + Na]+): 406.1414; found:
406.1409; []D23.8 –51.0 (c 1.0, CHCl3, 98% ee); mp 178–180 °C.
syn Isomer
(4) (a) Hanhan, N. V.; Sahin, A. H.; Chang, T. W.; Fettinger, J. C.;
Franz, A. K. Angew. Chem. Int. Ed. 2010, 49, 744. (b) Aikawa, K.;
Mimura, S.; Numata, Y.; Mikami, K. Eur. J. Org. Chem. 2011, 62.
(c) Yanagisawa, A.; Kushihara, N.; Sugita, T.; Yoshida, K. Synlett
2012, 23, 1783. (d) Li, J.; Li, Y.; Sun, J.; Gui, Y.; Huang, Y.; Zha, Z.;
Wang, Z. Chem. Commun. 2019, 55, 6309. For examples of
related aldol reactions: (e) Lu, Y.; Wang, M.; Zhao, X.; Liu, X.;
Lin, L.; Feng, X. Synlett 2015, 26, 1545. (f) Dai, L.; Lin, L.; Zheng,
J.; Zhang, D.; Liu, X.; Feng, X. Org. Lett. 2018, 20, 5314.
(5) Yanagisawa, A.; Miyake, R.; Yoshida, K. Eur. J. Org. Chem. 2014,
4248.
(6) (a) Gil, J.; Medio-Simon, M.; Mancha, G.; Asensio, G. Eur. J. Org.
Chem. 2005, 1561. (b) Claraz, A.; Leroy, J.; Oudeyer, S.; Levacher,
V. J. Org. Chem. 2011, 76, 6457.
(7) In our previous study on the chiral silver(I)-catalyzed asymmet-
ric allylation of aldehydes, we showed that a considerable
amount of an inert 2:1 complex of BINAP/silver(I) salt was
formed accompanied by a reactive 1:1 complex when BINAP
was added to an equimolar amount of the silver salt in MeOH. In
the reaction, a 0.6:1 mixture of BINAP/silver(I) salt was found to
produce the desired 1:1 complex without the formation of the
2:1 complex: (a) Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.;
Asakawa, K.; Matsumoto, Y.; Yamamoto, H. Angew. Chem. Int.
Ed. 1999, 38, 3701. (b) Yanagisawa, A.; Nakatsuka, Y.; Asakawa,
K.; Kageyama, H.; Yamamoto, H. Synlett 2001, 69.
(c) Yanagisawa, A.; Nakatsuka, Y.; Asakawa, K.; Wadamoto, M.;
Kageyama, H.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2001, 74,
1477.
1H NMR (400 MHz, CDCl3): = 8.13 (dd, J = 7.9, 1.1 Hz, 1 H), 7.50
(td, J = 7.5, 1.3 Hz, 1 H), 7.27–7.37 (m, 7 H), 7.14–7.20 (m, 2 H),
6.93 (td, J = 7.6, 0.9 Hz, 1 H), 6.73 (d, J = 7.9 Hz, 1 H), 6.23 (s, 1 H),
5.00 (d, J = 15.5 Hz, 1 H), 4.86 (d, J = 15.7 Hz, 1 H), 3.45 (dd, J =
13.8, 4.4 Hz, 1 H), 3.01–3.10 (m, 1 H), 2.79 (dt, J = 16.7, 3.4 Hz, 1
H), 1.83–1.89 (m, 1 H), 1.40 (qd, J = 13.2, 4.3 Hz, 1 H). 13C NMR
(100 MHz, CDCl3): = 201.9, 174.7, 144.3, 143.0, 135.4, 134.6,
132.2, 129.6, 129.5, 128.8 (2 C), 128.7, 127.7, 127.4, 127.3 (2 C),
126.9, 124.6, 123.3, 109.5, 78.6, 51.9, 43.9, 28.5, 24.7. IR (neat):
3399, 1685, 1615, 1492, 1456, 1371, 1226, 1172, 1073, 940 cm–1
.
MS (ESI): m/z calcd for [C25H21O3NNa]+ ([M + Na]+): 406.1414;
23.9
found: 406.1407; []D
+6.3 (c 0.99, CHCl3, 6% ee); mp 147–
148 °C.
(9) Libman, J.; Sprecher, M.; Mazur, Y. Tetrahedron 1969, 25, 1679.
(10) The anti/syn ratio of 3fd was determined by comparison with
reported 1H NMR data: (a) Zhao, H.; Meng, W.; Yang, Z.; Tian, T.;
Sheng, Z.; Li, H.; Song, X.; Zhang, Y.; Yang, S.; Li, B. Chin. J. Chem.
2014, 32, 417. See also: (b) Mao, Z.; Zhu, X.; Lin, A.; Li, W.; Shi,
Y.; Mao, H.; Zhu, C.; Cheng, Y. Adv. Synth. Catal. 2013, 355, 2029;
the anti/syn ratios of other aldol products 3 were determined by
analogy.
(8) Typical Experimental Procedure for the Asymmetric Aldol
Reaction Catalyzed by (R)-DM-BINAP·AgOTf and (i-Pr)2NEt:
Synthesis of 1-Benzyl-3-hydroxy-3-(1-oxo-1,2,3,4-tetrahy-
dronaphthalen-2-yl)indolin-2-one (3ad, Entry 8 in Table 2,
© 2021. Thieme. All rights reserved. Synlett 2021, 32, A–G