Toward Synthetic Tubes for NO /N O
2 4
A R T I C L E S
2
biomedicine as NO-releasing drugs.21 In total synthesis and
methodology, -NdO is an important activating group, allowing
elegant transformations of amides to carboxylic acids and their
derivatives.22 In addition, nitrosation mimics interactions be-
tween biological tissues and environmentally toxic NOx gases.23
Tube 3 thus converts NO2/N2O4 into mild and effective
nitrosating reagents. Tight but reversible encapsulation of NO+
species should offer regioselectivities and size-shape selectivi-
ties, previously unknown for existing, more aggressive nitro-
sating agents (e.g., NO+ salts, N2O3, NO2/N2O4, NO/O2, HNO2,
etc.).15
FTMS. Elemental analysis was performed on a Perkin-Elmer 2400 CHN
analyzer. All experiments with moisture- and/or air-sensitive compounds
were run under a dried nitrogen atmosphere. For column chromatog-
raphy, Silica Gel 60 Å (Sorbent Technologies, Inc.; 200-425 mesh)
was used. Parent tetrahydroxycalix[4]arene25 was prepared according
to the published procedures. NO2/N2O4 was generated from copper and
concentrated HNO3. Molecular modeling was performed using com-
mercial MacroModel 7.1 with Amber* Force Field.26
Caution 1: NO2 has an irritating odor and is very toxic! Caution 2:
N-Nitrosoamides are carcinogens27 and should be treated with
extreme care!
5,11,17,23-Tetra-t-butyl-25,26,27,28-tetrakis(n-hexyloxy)calix[4]-
arene, 1,3-Alternate (1b). Prepared by the two-step alkylating
procedure described in details in the previous studies.8 Yield 42%, mp
Conclusions and Outlook
1
232 °C; H NMR (CDCl3) δ 6.95 (s, 8 H), 3.73 (s, 8 H), 3.38 (t, J )
Synthetic nanotubes can now be prepared for chemical
entrapment and conversion of NO2/N2O4. These are based on
calix[4]arenes and take advantage of their extremely diverse
chemistry. Such nanotubes may act as encapsulated nitrosating
reagents, thus opening a novel opportunity for NO2/N2O4
utilization. There is also a potential sensory application, since
dramatic color changes are involved. Finally, in contrast to
cavitands, carcerands, and capsules,7 supramolecular chemistry
of synthetic nanotubes is unexplored. We are now utilizing our
design and strategy for the preparation of longer calixarene tubes
for supramolecular gas storage and fixation.24 We are also
exploring regio- and stereoselective nitrosation processes with
encapsulated nitrosonium guests.
7.5 Hz, 8 H), 1.28 (s, 36 H), 1.25-1.1 (m, 32 H), 0.86 (t, J ) 7.5 Hz,
12 H); 13C NMR (CDCl3) δ 154.8, 143.4, 133.1, 126.0, 70.8, 39.0,
33.9, 32.0, 31.8, 31.7, 29.7, 25.6, 23.0, 14.2; MALDI-TOF, m/z 985.71
([M + H]+; calcd for C68H105O4, 985.80), 1007.93 ([M + Na]+; calcd
for C68H104O4Na, 1007.78).
25,27-Bis(hydroxy(ethyloxyethyl)oxy)-26,28-bis(1-propyloxy)-
calix[4]arene, 1,3-Alternate. 25,27-Dihydroxy-26,28-bis(1-propyloxy)-
calix[4]arene (6;9 1 g, 1.96 mmol), diethylene glycol monotosylate (1.53
g, 5.88 mmol), and Cs2CO3 (9.59 g, 30 mmol) in MeCN (100 mL)
were refluxed under nitrogen for 24 h. The solution was evaporated to
dryness, diluted with CH2Cl2 (100 mL), and neutralized with 5%
aqueous HCl (100 mL). The organic layer was separated, washed with
water (3 × 100 mL), and evaporated. Column chromatography
(CHCl3-acetone, 8:2) afforded the product (Rf ) 0.21) as a colorless
1
oil. Yield 0.13 g (10%); H NMR (CDCl3) δ 7.07 (d, J ) 7.5 Hz, 4
Experimental Section
H), 7.03 (d, J ) 7.5 Hz, 4 H), 6.79 (t, J ) 7.5 Hz, 2 H), 6.74 (t, J )
7.5 Hz, 2 H), 3.79-3.76 (m, 8 H), 3.67 (2 × d, J ) 15.0 Hz, 8 H),
3.61-3.58 (m, 8 H), 3.52 (t, J ) 7.8 Hz, 4 H), 1.59-1.52 (m, 4 H),
0.87 (t, J ) 7.5 Hz, 6 H); 13C (CDCl3) δ 156.6, 155.9, 133.9, 130.4,
130.2, 122.7, 122.4, 73.0, 72.8, 71.3, 70.1, 61.7, 37.0, 23.2, 10.3;
MALDI-FTMS 707.3540 ([M + Na]+; calcd for C42H52O8Na,
707.3554).
1
General Methods. H and 13C NMR spectra were recorded at 295
( 1 °C on a JEOL Eclipse 500 MHz spectrometer. Chemical shifts
were measured relative to residual nondeuterated solvent resonances.
FTIR spectra were recorded on a Bruker Vector 22 FTIR spectrometer.
UV-vis spectra were measured on a Varian Cary-50 spectrophotometer.
MALDI-TOF mass spectra were recorded on a delayed-extraction
MALDI-TOF mass spectrophotometer Voyager DE (Applied Biosys-
tems). HRMS MALDI spectra were obtained on an Ion Spec Ultima
25,27-Bis(2-p-toluenesulfonyl(bisoxyethyl)oxy)-26,28-bis(1-
propyloxy)calix[4]arene, 1,3-Alternate (7). A solution of NaOH (1.96
g, 49 mmol) in water (10 mL) was added dropwise to the mixture of
the above-described compound (1.34 g, 1.96 mmol) and TsCl (1.86 g,
9.8 mmol) in THF (100 mL), upon cooling on an ice bath. After 24 h
of stirring at room temperature, the solvents were evaporated. Column
chromatography on silica gel (EtOAc-hexane, 1:1) afforded product
7 (Rf ) 0.6) as a colorless oil. Yield 1.95 g (>95%); 1H NMR (CDCl3)
δ 7.80 (d, J ) 8.5 Hz, 4 H), 7.31 (d, J ) 8.5 Hz, 4 H), 6.98 (d, J )
7.5 Hz, 4 H), 6.96 (d, J ) 7.5 Hz, 4 H), 6.69 (t, J ) 7.5 Hz, 2 H), 6.61
(t, J ) 7.5 Hz, 2 H), 4.17 (t, J ) 7.0 Hz, 4 H), 3.64, 3.61 (2 × t, J )
7.0 Hz, 8 H), 3.59 (2 × d, J ) 15.0 Hz, 8 H), 3.50, 3.45 (2 × t, J )
7.0 Hz, 8 H), 1.61-1.55 (m, 4 H), 0.89 (t, J ) 7.5 Hz, 6 H).
(25,27-Bis(2-hidroxyethyloxy)-26,28-bis(1-propyloxy)calix[4]-
arene, 1,3-Alternate (8). 25,27-Bis(2-p-toluenesulfonyloxyethyloxy)-
26,28-bis(1-propyloxy)calix[4]arene (9;10 1.2 g, 1.3 mmol) was dis-
solved in DMSO (45 mL), KOH (1.54 g, 27.4 mmol), and water (10
mL). The reaction mixture was heated at 110 °C for 2-4 h and
monitored by thin-layer chromatography (TLC) (hexanes-EtOAc, 5:1),
then diluted with CH2Cl2 (100 mL), and cooled to -5 °C, after which
5% aqueous HCl (100 mL) was added. The organic layer was separated,
washed with water (3 × 100 mL), and evaporated. The residue was
passed through the column with silica gel (hexanes-EtOAc, 5:1) to
(21) (a) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk,
A. J. Chem. ReV. 2002, 102, 1091-1134. (b) Granik, V. G.; Grigor’ev, N.
B. Russ. Chem. Bull. 2002, 51, 1375-1422.
(22) (a) White, E. H. J. Am. Chem. Soc. 1955, 77, 6008-6010. (b) White, E.
H. J. Am. Chem. Soc. 1955, 77, 6014-6022. (c) Olah, G. A.; Olah, J. A.
J. Org. Chem. 1965, 30, 2386-2387. (d) Nikolaides, N.; Ganem, B.
Tetrahedron Lett. 1990, 31, 1113-1116. (e) Kim, Y. H.; Kim, K.; Park,
Y. J. Tetrahedron Lett. 1990, 31, 3893-3894. (f) Glatzhofer, D. T.; Roy,
R. R.; Cossey, K. N. Org. Lett. 2002, 4, 2349-2352. (g) Garcia, J.;
Vilarassa, J. Tetrahedron Lett. 1982, 23, 1127-1128. (h) Berenguer, R.;
Garcia, J.; Vilarassa, J. Synthesis 1989, 305-306. (i) Saavedra, J. E. J.
Org. Chem. 1979, 44, 860-861. (j) Nikolaides, N.; Godfrey, A. G.; Ganem,
B. Tetrahedron Lett. 1990, 31, 6009-6012. (k) Darbeau, R. W.; White, E.
H. J. Org. Chem. 2000, 65, 1121-1131. (l) Wudl, F.; Lee, T. B. K. J. Am.
Chem. Soc. 1971, 93, 271-273. (m) Garcia, J.; Gonzalez, J.; Segura, R.;
Vilarrasa, J. Tetrahedron 1984, 40, 3121-3127, and literature therein. (n)
Garcia, J.; Gonzalez, J.; Segura, R.; Urpi, F.; Vilarrasa, J. J. Org. Chem.
1984, 49, 3322-3327. (o) Kelly, T. R.; Xu, W.; Ma, Z.; Li, Q.; Bhushan,
V. J. Am. Chem. Soc. 1993, 115, 5843-5844. (p) Kelly, T. R.; Jagoe, C.
T.; Li, Q. J. Am. Chem. Soc. 1989, 111, 4522-4524. (q) Karanewsky, D.
S.; Malley, M. F.; Gougoutas, J. Z. J. Org. Chem. 1991, 56, 3744-3747.
(r) Evans, D. A.; Carter, P. H.; Dinsmore, C. J.; Barrow, J. C.; Katz, J. L.;
Kung, D. W. Tetrahedron Lett. 1997, 38, 4535-4538. (s) Webster, F. X.;
Millar, J. G.; Silverstein, R. M. Tetrahedron Lett. 1986, 27, 4941-4944.
(t) Uskokovic, M.; Gutzwiller, J.; Henderson, T. J. Am. Chem. Soc. 1970,
92, 203-204.
(23) (a) Kirsch, M.; Korth, H.-G.; Sustmann, R.; de Groot, H. Biol. Chem. 2002,
383, 389-399. (b) Butler, A. R.; Williams, D. L. H. Chem. Soc. ReV. 1993,
233-241.
(24) Other publications on supramolecular chemistry of gases from this
laboratory: (a) Kang, Y.; Zyryanov, G. V.; Rudkevich, D. M. Chem.
Commun. 2003, 2470-2471 (NO2/N2O4). (b) Xu, H.; Hampe, E. M.;
Rudkevich, D. M. Chem. Commun. 2003, 2828-2829 (CO2). (c) Hampe,
E. M.; Rudkevich, D. M. Tetrahedron 2003, 59, 9619-9625 (CO2). (d)
Zyryanov, G. V.; Hampe, E. M.; Rudkevich, D. M. Angew. Chem., Int.
Ed. 2002, 41, 3854-3857 (N2O, CO2). (e) Hampe, E. M.; Rudkevich, D.
M. Chem. Commun. 2002, 1450-1451 (CO2).
(25) (a) Gutsche, C. D.; Iqbal, M. Org. Synth. 1990, 68, 234-237. (b) Gutsche,
C. D.; Levine, J. A.; Sujeeth, P. K. J. Org. Chem. 1985, 50, 5802-5806.
(26) MacroModel 7.1; MM2 and Amber* Force Field. See: Mohamadi, F.;
Richards, N. G.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.;
Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440-
467.
(27) Mirvish, S. S. Cancer Lett. 1995, 93, 17-48.
9
J. AM. CHEM. SOC. VOL. 126, NO. 13, 2004 4269