686
E. Demont et al.
LETTER
References
(1) Present address: GlaxoSmithKline. The Frythe, Welwyn,
AL6 9AR Hertfordshire, UK.
(2) Crackett, P.; Demont, E.; Eatherton, A.; Frampton, C. S.;
Gilbert, J.; Kahn, I.; Redshaw, S.; Watson, W. Synlett 2004,
DOI: 10.1055/s-2004-81548.
(3) Martin, V. A.; Murray, D. H.; Pratt, N. E.; Zhao, Y.;
Albizati, K. F. J. Am. Chem. Soc. 1990, 112, 6965.
(4) Nicolaou, K. C.; Postema Maarten, H. D.; Miller, N. D.;
Yang, G. Angew. Chem. Int. Ed. 1997, 36, 2821.
(5) (a) Adam, W.; Hadjiarapoglou, L.; Wang, X. Tetrahedron
Lett. 1989, 30, 6497. (b) Stankovic, S.; Espenson, J. H. J.
Org. Chem. 1998, 63, 4129.
(6) (a) For an example of selective deprotonation of non-
symmetrical ketones using a chiral amide base see:
Sobukawa, M.; Nakajima, M.; Koga, K. Tetrahedron:
Asymmetry 1990, 1, 295. (b) For a recent review on the use
of chiral amide bases see: O’Brien, P. J. Chem. Soc., Perkin
Trans. 1 1998, 1439; and references therein.
Figure 3 ORTEP diagram of compound 24.
(7) Overberger, C. G.; Marullo, N. P.; Hiskey, R. G. J. Am.
Chem. Soc. 1961, 83, 1374.
(8) Ghera, E.; Yechezkel, T.; Hassner, A. J. Org. Chem. 1996,
61, 4959.
The length of the synthesis of 1919 together with the prob-
lem of the choice of a good protecting group20 for the side
chain nitrogen led us to move towards a shorter approach
using 27 as a Michael acceptor (Scheme 5).
(9) Parkes, K. E. B.; Bushnell, D. J.; Crackett, P. H.; Dunson, S.
J.; Freeman, A. C.; Gunn, M. P.; Hopkins, R. A.; Lambert,
R. W.; Martin, J. A.; Merrett, J. H.; Redshaw, S.; Spurden,
W. C.; Thomas, G. J. J. Org. Chem. 1994, 59, 3656.
(10) Yamagushi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391–
394.
(11) Use of propiolate trialkylester could have avoided obtaining
this by-product but the large scale synthesis of these
compounds was considered difficult. See for example:
Baldwin, J. E.; Pritchard, G. J.; Rathmell, R. E. Synth.
Commun. 2000, 30, 3833.
(12) For the procedures used to synthesize 17 see: (a) Brimble,
M. A.; Edmonds, M. K.; Williams, G. M. Tetrahedron 1992,
48, 6455. (b) Marshall, J. A.; Andrews, R. C.; Lebioda, L. J.
Org. Chem. 1987, 52, 2378.
(13) This type of compound can be obtained by olefin metathesis
but the high dilution of these reaction is not compatible with
the scale of reaction envisioned in this synthesis, see: Ghosh,
A. K.; Cappiello, J.; Shin, D. Tetrahedron Lett. 1998, 39,
4651.
Treatment of 27 with the lithium salt of sulfone 14 gave,
in high yield21 28, which was isomerized to 29 prior to re-
duction.22 Ozonolysis of 30 followed by aldolization-
elimination provided the desired ketone 31 in good yield.
Ketone 31 was then easily transformed to 32 by reduction
of the double bond, saponification and coupling to tert-
butyl amine. The transformations previously described2
on the isomeric 4-ketone were also applicable to 32: for
example, reduction of 32 using Luche’s23 conditions fol-
lowed by methylation gave ether 33 in good yields and
with high diastereoselectivity.
We have thus developed efficient syntheses of both struc-
tures of both 4- and 5-substituted carbocyclic mimetics of
scissile Phe-Pro. The biological activities of HIV protease
inhibitors derived from these intermediates will be report-
ed in due course.
Scheme 5 Conditions: a) DIBAL-H, PhCH3, –78 °C. b) Ph3PCHCO2CH3, THF, r.t. c) 15 (1.2 equiv), LDA, THF, –78 °C. d) MeONa, MeOH,
0 °C. e) Na/Hg 5%, MeOH, KH2PO4, 0 °C. f) O3, MeOH–CH2Cl2, –78 °C; PPh3, –78 °C to r.t. g) PTSA, PhCH3, Dean–Stark, reflux. h) H2, Pd/
C, EtOAc, RT. i) LiOH, THF–water, 0 °C. j) HOBT, EDAC·HCl, t-BuNH2, CH2Cl2, 0 °C to r.t. k) NaBH4, CeCl3, MeOH, –10 °C to r.t. (ds>
90/10). j) NaH, DMF, 0 °C; MeI, 0 °C to r.t.
Synlett 2004, No. 4, 684–687 © Thieme Stuttgart · New York