J. W. Ciszek, J. M. Tour / Tetrahedron Letters 45 (2004) 2801–2803
2803
developed and various Sonogashira, and halogen to Li
to S conversion sequences were utilized.
1) t-BuLi (4 equiv)
2) ICH2CH2I
62%
I
I
Br
Br
1
14
Supporting information available: The experimental
details as well as spectroscopic data are available. This
material is available free of charge via the Internet.
SAc
AcS
SAc
Pd/Cu, NPri2Et
15
57%
Acknowledgements
1) TMSA, Pd/Cu,
NPri2Et, 100%
This work was supported by DARPA, ONR, and the
NSF Penn State MRSEC. The NSF, CHEM 0075728,
provided partial funds for the 400 MHz NMR. We
thank Aaron Engel and Dr. Chih-Hsiu Lin for their
assistance and Dr. Ian Chester of FAR Laboratories for
the generous donation of trimethylsilylacetylene.
2
H
H
2) TBAF
67%
N
N
N
16
17
I
SAc
AcS
SAc
N
Pd/Cu, NPri2Et
21%
TBSO
OTBS
SAc
AcS
References and notes
SAc
9
Pd/Cu, NEt3
76%
1. Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.;
Burgin, T. P.; Jones, L., II; Allara, D. L.; Tour, J. M.;
Weiss, P. S. Science 1996, 271, 1705.
18
2. Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour,
J. M. Science 1997, 278, 252.
O
O
TBAF, AcOH
3. Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science
1999, 286, 1550.
AcS
SAc
air
4. Donhauser, Z. J.; Mantooth, B. A.; Kelly, K. F.; Bumm,
L. A.; Monnell, J. D.; Stapleton, J. J.; Price, D. W.;
Rawlett, A. M.; Allara, D. L.; Tour, J. M.; Weiss, P. S.
Science 2001, 292, 2303.
19
23%
Scheme 3. Synthesis of elongated polyaromatics.
5. Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am.
Chem. Soc. 2000, 122, 3015.
6. Ramachandran, G. K.; Hopson, T. J.; Rawlett, A. M.;
Nagahara, L. A.; Primak, A.; Lindsay, S. M. Science 2003,
300, 1413.
found to be too unreactive to couple with the 4-ethy-
nyl(thioacetyl)benzene16 in acceptable yields. Thus 1 was
converted to the diiodo species, 14, before undergoing
coupling. Compound
2 would notcouple whit
4-ethynyl(thioacetyl)benzene under moderate condi-
tions. However, coupling first to the more reactive
trimethylsilylacetylene, deprotecting and then coupling
to the aryl thioacetyl group was effective.
7. Saitoh, Y.; Koizumi, T.; Osakada, K.; Tamamoro, T. Can.
J. Chem. 1997, 75, 1336.
8. Miller, J. C.; Meek, J. S.; Strickler, S. J. J. Am. Chem. Soc.
1977, 99, 8175.
9. Bochenkov, V. N. J. Org. Chem. USSR (Engl. Transl.)
1977, 12, 2355.
The final compound of interest was the phenanthrene-
quinone compound 19. Extensive work with this com-
pound (both by the authors and co-workers17) has
shown that although 3 can undergo Sonogashira cou-
plings, the yields are irreproducible, often giving no
product. A more reproducible route to 19 involves using
9. When the quinone functionality was protected, cou-
pling was reliably achieved. Deprotection and oxidation
afforded the desired compound 19.
10. Brown, W. G.; Bluestein, B. A. J. Am. Chem. Soc. 1943,
65, 1235.
11. Bacon, R. G. R.; Lindsay, W. S. J. Chem. Soc. 1958,
1375.
12. Tour, J. M. Molecular Electronic: Commercial Insights,
Chemistry, Devices, Architecture and Programming; World
Scientific: New Jersey, 2003.
13. Tour, J. M.; Jones, L., II; Pearson, D. L.; Lamba, J. S.;
Burgin, T. P.; Whitesides, G. M.; Allara, D. L.; Parikh, A.
N.; Atre, S. V. J. Am. Chem. Soc. 1995, 117, 9529.
14. Yamato, T.; Fujimoto, M.; Miyazawa, A.; Motsuo, K.
J. Chem. Soc., Perkin Trans. 1 1997, 8, 1201.
15. Fox, J. M.; Goldberg, N. R.; Katz, T. J. J. Org. Chem.
1998, 63, 7456.
In summary, we provide detailed syntheses of several
potential molecular devices. All of the target molecules
contain rigid polyaromatic cores that are being used to
discern the mechanism for switching in molecular
devices. In progression toward these devices a new
method for synthesizing 2,7-dibromophenanthrene was
16. Pearson, D. L.; Tour, J. M. J. Org. Chem. 1997, 62, 1376.
17. Zhao, Y.; Shirai, Y.; Chiu, Y.-H.; Yao, Y.; Yang, H.;
Tour, J. M. Unpublished data.