Page 9 of 11
Journal of the American Chemical Society
K+ channel axis is suppressed in cancer and its normalization
promotes apoptosis and inhibits cancer growth. Cancer Cell 2007,
11, 37-51.
18. Sisson, A. L.; Shah, M. R.; Bhosale, S.; Matile, S., Synthetic
ion channels and pores (2004-2005). Chem. Soc. Rev. 2006, 35,
1269-1286.
35. Poburko, D.; Santo-Domingo, J.; Demaurex, N., Dynamic
regulation of the mitochondrial proton gradient during cytosolic
calcium elevations. J. Biol. Chem. 2011, 286, 11672-84.
36. Kong, X.; Su, F.; Zhang, L.; Yaron, J.; Lee, F.; Shi, Z.; Tian,
Y.; Meldrum, D. R., A Highly Selective Mitochondria-Targeting
Fluorescent K+ Sensor. Angew. Chem. Int. Ed. 2015, 54, 12053-
12057.
37. Szewczyk, A.; Jarmuszkiewicz, W.; Kunz, W. S.,
Mitochondrial potassium channels. IUBMB Life 2009, 61, 134-43.
38. Zorov, D. B.; Juhaszova, M.; Sollott, S. J., Mitochondrial
Reactive Oxygen Species (ROS) and ROS-Induced ROS Release.
Physiol. Rev. 2014, 94, 909-950.
39. Yang, D., Wong, N. and Hu, J. (2018). US20150219676A1.
40. Manago, A.; Leanza, L.; Carraretto, L.; Sassi, N.; Grancara, S.;
Quintana-Cabrera, R.; Trimarco, V.; Toninello, A.; Scorrano, L.;
Trentin, L.; Semenzato, G.; Gulbins, E.; Zoratti, M.; Szabo, I.,
Early effects of the antineoplastic agent salinomycin on
mitochondrial function. Cell Death Dis. 2015, 6, e1930.
41. Clevers, H., The cancer stem cell: premises, promises and
challenges. Nat. Med. 2011, 313.
42. Medema, J. P., Cancer stem cells: the challenges ahead. Nat.
Cell Biol. 2013, 15, 338-44.
43. Frank, N. Y.; Schatton, T.; Frank, M. H., The therapeutic
promise of the cancer stem cell concept. J. Clin. Investig 2010, 120,
41-50.
44. De Francesco, E. M.; Sotgia, F.; Lisanti, M. P., Cancer stem
cells (CSCs): metabolic strategies for their identification and
eradication. The Biochemical journal 2018, 475, 1611-1634.
45. Gupta, P. B.; Onder, T. T.; Jiang, G.; Tao, K.; Kuperwasser, C.;
Weinberg, R. A.; Lander, E. S., Identification of selective inhibitors
of cancer stem cells by high-throughput screening. Cell 2009, 138,
645-59.
46. Naujokat, C.; Steinhart, R., Salinomycin as a drug for targeting
human cancer stem cells. J. Biomed. Biotechnol. 2012, 2012,
950658.
47. Boesch, M.; Zeimet, A. G.; Rumpold, H.; Gastl, G.; Sopper, S.;
Wolf, D., Drug Transporter-Mediated Protection of Cancer Stem
Cells From Ionophore Antibiotics. Stem Cells Transl. Med. 2015,
4, 1028-1032.
48. Boesch, M.; Sopper, S.; Wolf, D., Ionophore Antibiotics as
Cancer Stem Cell-Selective Drugs: Open Questions. Oncologist
2016, 21, 1291-1293.
49. Chau, W. K.; Ip, C. K.; Mak, A. S. C.; Lai, H. C.; Wong, A. S.
T., c-Kit mediates chemoresistance and tumor-initiating capacity of
ovarian cancer cells through activation of Wnt/β-catenin–ATP-
binding cassette G2 signaling. Oncogene 2012, 32, 2767.
50. Kryczek, I.; Liu, S.; Roh, M.; Vatan, L.; Szeliga, W.; Wei, S.;
Banerjee, M.; Mao, Y.; Kotarski, J.; Wicha, M. S.; Liu, R.; Zou,
W., Expression of aldehyde dehydrogenase and CD133 defines
ovarian cancer stem cells. Int. J. Cancer 2012, 130, 29-39.
51. Farnie, G.; Sotgia, F.; Lisanti, M. P., High mitochondrial mass
identifies a sub-population of stem-like cancer cells that are chemo-
resistant. Oncotarget 2015, 6, 30472-30486.
52. Kim, H. K.; Noh, Y. H.; Nilius, B.; Ko, K. S.; Rhee, B. D.; Kim,
N.; Han, J., Current and upcoming mitochondrial targets for cancer
therapy. Semin. Cancer Biol. 2017, 47, 154-167.
53. Li, J.; Yuan, J., Caspases in apoptosis and beyond. Oncogene
2008, 27, 6194.
54. Elmore, S., Apoptosis: a review of programmed cell death.
Toxicol. Pathol. 2007, 35, 495-516.
55. Vives-Bauza, C.; Zhou, C.; Huang, Y.; Cui, M.; de Vries, R. L.;
Kim, J.; May, J.; Tocilescu, M. A.; Liu, W.; Ko, H. S.; Magrane,
J.; Moore, D. J.; Dawson, V. L.; Grailhe, R.; Dawson, T. M.; Li,
C.; Tieu, K.; Przedborski, S., PINK1-dependent recruitment of
1
2
3
4
5
6
7
8
19. Gokel, G. W.; Negin, S., Synthetic Ion Channels: From Pores
to Biological Applications. Acc. Chem. Res. 2013, 46, 2824-2833.
20. Ren, C.; Chen, F.; Ye, R.; Ong, Y. S.; Lu, H.; Lee, S. S.; Ying,
J. Y.; Zeng, H., Molecular Swings as Highly Active Ion
Transporters. Angew. Chem. Int. Ed. 2019, 58, 8034-8038.
21. Ye, R.; Ren, C.; Shen, J.; Li, N.; Chen, F.; Roy, A.; Zeng, H.,
Molecular Ion Fishers as Highly Active and Exceptionally
Selective K+ Transporters. J. Am. Chem. Soc. 2019, 141, 9788-
9792.
22. Yang, D.; Qu, J.; Li, B.; Ng, F.-F.; Wang, X.-C.; Cheung, K.-
K.; Wang, D.-P.; Wu, Y.-D., Novel Turns and Helices in Peptides
of Chiral α-Aminoxy Acids. J. Am. Chem. Soc. 1999, 121, 589-
590.
23. Li, X.; Shen, B.; Yao, X.-Q.; Yang, D., A Small Synthetic
Molecule Forms Chloride Channels to Mediate Chloride Transport
across Cell Membranes. J. Am. Chem. Soc. 2007, 129, 7264-7265.
24. Zha, H.-Y.; Shen, B.; Yau, K.-H.; Li, S.-T.; Yao, X.-Q.; Yang,
D., A small synthetic molecule forms selective potassium channels
to regulate cell membrane potential and blood vessel tone. Org.
Biomol. Chem. 2014, 12, 8174-8179.
25. Davis, J. T.; Gale, P. A.; Okunola, O. A.; Prados, P.; Iglesias-
Sanchez, J. C.; Torroba, T.; Quesada, R., Using small molecules to
facilitate exchange of bicarbonate and chloride anions across
liposomal membranes. Nat. Chem. 2009, 1, 138-44.
26. Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.;
Livingstone, D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. V.;
Zefirov, N. S.; Makarenko, A. S.; Tanchuk, V. Y.; Prokopenko, V.
V., Virtual Computational Chemistry Laboratory – Design and
Description. J. Comput. Aided Mol. Des. 2005, 19, 453-463.
27. Busschaert, N.; Wenzel, M.; Light, M. E.; Iglesias-Hernández,
P.; Pérez-Tomás, R.; Gale, P. A., Structure–Activity
Relationships in Tripodal Transmembrane Anion Transporters:
The Effect of Fluorination. J. Am. Chem. Soc. 2011, 133, 14136-
14148.
28. Yang, D.; Li, B.; Ng, F.-F.; Yan, Y.-L.; Qu, J.; Wu, Y.-D.,
Synthesis and Characterization of Chiral N−O Turns Induced by α
-Aminoxy Acids. J. Org. Chem. 2001, 66, 7303-7312.
29. Li, X.; Wu, Y.-D.; Yang, D., α-Aminoxy Acids: New
Possibilities from Foldamers to Anion Receptors and Channels.
Acc. Chem. Res. 2008, 41, 1428-1438.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
30. Riddell, F. G.; Arumugam, S.; Brophy, P. J.; Cox, B. G.; Payne,
M. C. H.; Southon, T. E., The nigericin-mediated transport of
sodium and potassium ions through phospholipid bilayers studied
by sodium-23 and potassium-39 NMR spectroscopy. J. Am. Chem.
Soc. 1988, 110, 734-738.
31. Eisenman, G.; Horn, R., Ionic selectivity revisited: The role of
kinetic and equilibrium processes in ion permeation through
channels. J. Membr. Biol. 1983, 76, 197-225.
32. Gilles, A.; Barboiu, M., Highly Selective Artificial K+
Channels: An Example of Selectivity-Induced Transmembrane
Potential. J. Am. Chem. Soc. 2016, 138, 426-32.
33. Matile, S.; Sakai, N., The Characterization of Synthetic Ion
Channels and Pores. In Analytical Methods in Supramolecular
Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: 2007; pp 391-
418.
34. Casey, J. R.; Grinstein, S.; Orlowski, J., Sensors and regulators
of intracellular pH. Nat. Rev. Mol. Cell Biol 2009, 11, 50.
ACS Paragon Plus Environment