J. M. Kim et al. / Tetrahedron Letters 45 (2004) 2805–2808
2807
S. J.;Blechert, S. Synlett 2001, 1547;(d) Alcaide, B.;
Almendros, P.;Alonso, J. M.;Aly, M. F.;Redondo, M. C.
Synlett 2001, 773;(e) Royer, F.;Vilain, C.;Elkaim, L.;
Grimaud, L. Org. Lett. 2003, 5, 2007;(f) Louie, J.;
Bielawski, C. W.;Grubbs, R. H. J. Am. Chem. Soc. 2001,
123, 11312;(g) Anand, R. V.;Baktharaman, S.;Singh, V.
Tetrahedron Lett. 2002, 43, 5393;(h) Rajesh, S.;Banerji,
B.;Iqbal, J. J. Org. Chem. 2002, 67, 7852;(i) Alcaide, B.;
Almendros, P.;Alonso, J. M.;Redondo, M. C. J. Org.
Chem. 2003, 68, 1426;(j) Chen, X.;Wiemer, D. F. J. Org.
Chem. 2003, 68, 6597.
Synthesis of N-allyl derivative 1d: The reaction of tosyl-
amide and allyl bromide gave the N-allyltosylamide in
53% yield (K2CO3, acetone, reflux, 7 h). To a stirred
solution of the corresponding Baylis–Hillman acetate
(300 mg, 1.2 mmol) in aqueous THF (4 mL, THF/H2O,
3:1) was added DABCO (163 mg, 1.45 mmol) and stirred
for 10 min at rt. To the reaction mixture was added N-
allyltosylamide (255 mg, 1.2 mmol) and heated to 50–60 °C
for 3 days. After usual workup and column chromato-
graphic purification process (hexane/ethyl acetate, 4:1) we
could obtain 220 mg of crude product as the mixture of
Baylis–Hillman alcohol and desired product 1d (in a ratio
of 2:5 by 1H NMR). The two compounds have very
similar mobility on TLC and we cannot separate them
easily. Thus, we converted the Baylis–Hillman alcohol into
its acetate again (Ac2O, DMAP, CH2Cl2, rt, 4 h) and
separate the desired product 1d in 31% isolated yield
(149 mg). The spectroscopic data of prepared compound
1d are listed below.
5. Our recent publications on the Baylis–Hillman chemistry:
(a) Lee, K. Y.;Kim, J. M.;Kim, J. N. Tetrahedron Lett.
2003, 44, 6737;(b) Kim, J. N.;Kim, J. M.;Lee, K. Y.
Synlett 2003, 821;(c) Im, Y. J.;Lee, C. G.;Kim, H. R.;
Kim, J. N. Tetrahedron Lett. 2003, 44, 2987;(d) Lee,
K. Y.;Kim, J. M.;Kim, J. N.
Kim, J. N.;Lee, H. J.;Lee, K. Y.;Gong, J. H.
Synlett 2003, 357;(e)
Synlett
2002, 173;(f) Lee, K. Y.;Kim, J. M.;Kim, J. N.
Tetrahedron 2003, 59, 385, and further references cited
therein.
1d (31%): 1H NMR (CDCl3) d 1.08 (t, J ¼ 7:1 Hz, 3H),
2.43 (s, 3H), 3.79–3.84 (m, 2H), 3.98–4.12 (m, 2H), 4.80 (s,
1H), 4.84 (d, J ¼ 7:3 Hz, 1H), 5.20–5.26 (m, 1H), 5.70 (s,
1H), 6.11 (s, 1H), 6.43 (s, 1H), 7.00–7.28 (m, 7H), 7.69 (d,
J ¼ 8:3 Hz, 2H).
6. For the synthesis of 2,5-dihydropyrrole derivatives, see: (a)
Xu, Z.;Lu, X. J. Org. Chem. 1998, 63, 5031;(b) Xu, Z.;
Lu, X. Tetrahedron Lett. 1997, 38, 3461.
7. For the synthesis of 2,5-dihydrofurans, see: (a) Hojo, M.;
Ohkuma, M.;Ishibashi, N.;Hosomi, A. Tetrahedron Lett.
1993, 34, 5943;(b) Hojo, M.;Ishibashi, N.;Hosomi, A.
Synlett 1996, 234;(c) Tiecco, M.;Testaferri, L.;Santi, C.
Eur. J. Org. Chem. 1999, 797.
8. For the synthesis of dihydrofurans and dihydropyrroles by
RCM, see: (a) Wakamatsu, H.;Blechert, S. Angew. Chem.,
Int. Ed. 2002, 41, 794;(b) Wakamatsu, H.;Blechert, S.
Angew. Chem., Int. Ed. 2002, 41, 2403;(c) Yang, C.;
Murray, W. V.;Wilson, L. J. Tetrahedron Lett. 2003, 44,
1783.
9. For the introduction of nucleophile in an SN2 fashion via
using the DABCO salt concept, see: (a) Basavaiah, D.;
Kumaragurubaran, N.;Sharada, D. S. Tetrahedron Lett.
2001, 42, 85;(b) Im, Y. J.;Kim, J. M.;Mun, J. H.;Kim,
J. N. Bull. Korean Chem. Soc. 2001, 22, 349;(c) Basavaiah,
D.;Jaganmohan, R.;Satyanarayana, T. Chem. Rev. 2003,
103, 811, and further references cited therein.
10. Synthesis of allyl ether 1a: To a stirred solution of the
corresponding Baylis–Hillman acetate (500 mg, 2 mmol) in
THF (3 mL) was added DABCO (452 mg, 4 mmol) and
stirred for 10 min at rt. To the reaction mixture was added
allyl alcohol (1.5 mL) and heated to 50–60 °C for 3 days.
After usual workup process and column chromatographic
purification process (hexane/ether, 30:1) we could obtain
the desired compound 1a in 71% isolated yield (350 mg).
Other compounds 1b and 1c were synthesized by using the
same experimental procedure. The spectroscopic data of
prepared compounds are listed below.
Synthesis of N-allyl derivative 1e: To a stirred solution of
the corresponding Baylis–Hillman acetate (400 mg,
1.835 mmol) in aqueous THF (4 mL, THF/H2O, 3:1) was
added DABCO (247 mg, 2.2 mmol) and stirred for 10 min
at rt. To the reaction mixture was added tosylamide
(314 mg, 1.835 mmol) and heated to 60–70 °C for 20 h.
After usual workup and column chromatographic purifi-
cation process (hexane/CH2Cl2/ether, 10:10:1) we could
obtain 252 mg of the Baylis–Hillman adduct derived from
N-tosylimine in 42% yield.5e To the reaction mixture of
this compound (130 mg, 0.395 mmol) and allyl bromide
(72 mg, 0.593 mmol) in DMF (2 mL) was added K2CO3
(82 mg, 0.593 mmol) and stirred at room temperature for
1 h. After usual workup and column chromatographic
purification process (hexane/ether, 3:1) we could obtain
the desired product 1e in 103 mg (71%).
1e: 1H NMR (CDCl3) d 2.29 (s. 3H), 2.43 (s, 3H), 3.82 (d,
J ¼ 6:9 Hz, 2H), 4.81–4.84 (m, 1H), 4.87 (s, 1H), 5.22–5.35
(m, 1H), 6.00 (d, J ¼ 1:5 Hz, 1H), 6.12 (s, 1H), 6.32 (d,
J ¼ 1:5 Hz, 1H), 6.93–6.97 (m, 2H), 7.18–7.28 (m, 5H),
7.67 (d, J ¼ 8:4 Hz, 2H); 13C NMR (CDCl3) d 21.49,
26.31, 48.99, 60.99, 117.68, 127.50, 127.76, 127.88, 128.44,
128.61, 129.40, 134.39, 137.19, 137.79, 143.17, 147.44,
198.03.
Synthesis of N-allyl derivative 1f: To a stirred solution of
the corresponding Baylis–Hillman acetate (100 mg,
0.498 mmol) and N-allyltosylamide (158 mg, 0.747 mmol)
in DMF (2 mL) was added K2CO3 (103 mg, 0.747 mmol)
and stirred at room temperature for 1 h. After usual
workup and column chromatographic purification process
(hexane/ether, 4:1) we could obtain the desired product 1f
in 106 mg (60%). Starting material 1g was prepared
similarly in 40% yield.
1a (71%): 1H NMR (CDCl3) d 1.22 (t, J ¼ 7:2 Hz, 3H),
3.96 (dt, J ¼ 5:4 and 1.5 Hz, 2H), 4.09–4.20 (m, 2H), 5.13–
5.29 (m, 3H), 5.85–5.98 (m, 2H), 6.31 (s, 1H), 7.23–7.37
(m, 5H); 13C NMR (CDCl3) d 14.31, 60.67, 69.85, 78.38,
116.90, 124.81, 127.65, 127.82, 128.26, 134.59, 139.68,
141.52, 165.84.
1f: 60%; 1H NMR (CDCl3) d 2.41 (s, 3H), 3.93 (d,
J ¼ 6:3 Hz, 2H), 4.11 (s, 2H), 5.19–5.26 (m, 2H), 7.12 (s,
1H), 7.29 (d, J ¼ 8:1 Hz, 2H), 7.41–7.44 (m, 3H), 7.67–
7.71 (m, 2H), 7.74 (d, J ¼ 8:1 Hz, 2H).
1b (50%): 1H NMR (CDCl3) d 4.00 (dt, J ¼ 5:7 and
1.5 Hz, 2H), 4.93 (s, 1H), 5.20–5.34 (m, 2H), 5.85–5.98 (m,
1H), 6.00–6.01 (m, 2H), 7.32–7.42 (m, 5H); 13C NMR
(CDCl3) d 69.74, 80.09, 116.86, 117.74, 125.12, 127.00,
128.75 (2C), 130.35, 133.64, 137.28.
1g: 40%; 1H NMR (CDCl3) d 1.31 (t, J ¼ 7:2 Hz, 3H), 2.40
(s, 3H), 3.74 (d, J ¼ 6:3 Hz, 2H), 4.19 (q, J ¼ 7:2 Hz, 2H),
4.24 (s, 2H), 4.90–4.97 (m, 2H), 5.45–5.56 (m, 1H), 7.21 (d,
J ¼ 8:1 Hz, 2H), 7.39–7.41 (m, 5H), 7.54 (d, J ¼ 8:1 Hz,
2H), 7.80 (s, 1H).
1
1c (71%): H NMR (CDCl3) d 2.81 (s, 3H), 3.91–3.94 (m,
2H), 5.13–5.29 (m, 2H), 5.41 (s, 1H), 5.84–5.97 (m, 1H),
6.17 (s, 2H), 7.21–7.37 (m, 5H); 13C NMR (CDCl3)
d 26.30, 69.79, 77.18, 116.85, 125.03, 127.36, 127.65,
128.25, 134.58, 140.09, 149.58, 198.40.
Typical procedure for the synthesis of 2,5-dihydrofuran
derivative 2a: To a stirred solution of allyl ether 1a
(123 mg, 0.5 mmol) in dichloromethane (50 mL) was added