2966
H. B. Mereyala, S. K. Mamidyala / Tetrahedron Letters 45 (2004) 2965–2966
by intramolecular cyclization using diethyl carbonate/
NaH/THF is described.
BnO
ref.16
BnO
i
OBn
OBn
O
O
ii
OH
D-xylose
O
O
OH
1
2
NH2
N
Acknowledgements
N
S.K.M. is thankful to the Council of Scientific and
Industrial Research (CSIR, New Delhi) for financial
support in the form of a senior research fellowship.
BnO
iii
OR
O
N
OBn
RO
v
N
OBn
O
BnO
OH
OH OH
OR
6 R=Bn
7 R=H
4 R=H
5 R=tosyl
3
iv
vi
References and notes
Scheme 1. Reagents and conditions: (i) IR-120 (Hþ) resin, H2O, 90 °C,
5 h, 95%; (ii) NaBH4, MeOH, rt, 4 h, 88%; (iii) EtOCO2Et
(2 mol equiv), THF, NaH, reflux, 3 h, 83%; (iv) tosyl chloride, pyridine,
CH2Cl2, rt, 4 h, 98%; (v) adenine (2 mol equiv), 18-crown-6
(1.2 mol equiv), DMF, 100 °C, 16 h, 58%; (vi) 10% Pd/C, H2, rt, 12 h,
MeOH, 93%.
1. (a) De Clercq, E. In Approaches to Antiviral Agents;
Harnden, M. H., Ed.; VCH: Deerfield Park, FL, 1985; pp
55–99; (b) De Clercq, E. Nucleosides, Nucleotides 1987, 6,
197–207; (c) Diana, G. D.; Pevear, D.; Young, D. C. Ann.
Rep. Med. Chem. 1989, 24, 129–137.
2. (a) Mitsuya, H.; Weinhold, K. J.; Furman, P. A.; St. Clair,
M. H.; Lehrman, S. N.; Gallo, R. C.; Bolognesi, D.; Barry,
D. W.; Broder, S. Proc. Natl. Acad. Sci. U.S.A. 1985, 82,
7096–7100; (b) Mitsuya, H.; Broder, S. Proc. Natl. Acad.
Sci. U.S.A. 1986, 83, 1911–1915.
3. (a) Crimmins, M. T. Tetrahedron 1998, 54, 9229–9272; (b)
Bianco, A.; Celleti, C.; Mazzei, R. A.; Umani, F. Eur. J.
Org. Chem. 2001, 1331–1334.
4. (a) Chu, C. K.; Cutler, S. J. J. Heterocycl. Chem. 1986, 23,
289–318; (b) Gao, H.; Mitra, A. K. Synthesis 2000, 329–
351.
5. (a) Jones, M. F.; Noble, S. A.; Robertson, C. A.; Storer,
R.; Highcock, R. M.; Lamont, R. B. J. Chem. Soc., Perkin
Trans. 1 1992, 1427–1439; (b) Soike, K. F.; Whiterock, V.
J. Antiviral Res. 1994, 23, 219–224; (c) Nair, V.; Jahnke, T.
S. Antimicrob. Agents Chemother. 1995, 39, 1017–1029.
6. Nair, V.; Nuesca, Z. M. J. Am. Chem. Soc. 1992, 114,
7951–7953.
7. Huryn, D. M.; Sluboski, B. C.; Tam, S. Y.; Weigele, M.;
Sim, I.; Anderson, B. D.; Mitsuya, H.; Broder, S. J. Med.
Chem. 1992, 35, 2347–2354.
8. (a) Purdy, D. E.; Zintek, L. B.; Nair, V. Nucleosides,
Nucleotides 1994, 13, 109–126; (b) Zhang, J.; Nair, V.
Nucleosides, Nucleotides 1997, 16, 1091–1094; (c) Talekar,
R. R.; Wightman, R. H. Nucleosides, Nucleotides 1997, 16,
495–505.
9. Kakefuda, A.; Shuto, S.; Nagahata, T.; Seki, J. I.; Sasaki,
T.; Matsuda, A. Tetrahedron 1994, 34, 10167–10182.
10. (a) Yang, Z.-J.; Yu, H.-W.; Min, J.-M.; Ma, L.-T.; Zhang,
L.-H. Tetrahedron: Asymmetry 1997, 8, 2739–2747; (b)
Yu, H.-W.; Zhang, H.-Y.; Yang, Z.-J.; Min, J.-M.; Ma,
L.-T.; Zhang, L.-H. Pure Appl. Chem. 1998, 70, 435–438.
11. Jung, M. E.; Kretschik, O. J. Org. Chem. 1998, 63, 2975–
2981.
1,4-anhydro-3,5-di-O-benzyl-
prepared from 3,5-di-O-benzyl-1,2-O-isopropylidene-a-
-xylofuranose 1.16 Compound 1, on reaction with IR-
120 (Hþ) resin in water at 90 °C for 5 h resulted in the
formation of 3,5-di-O-benzyl- -xylofuranose 2. Reduc-
D-xylitol was elegantly
D
D
tion of 2 with NaBH4/MeOH gave (2S,3R,4R)-3,5-di-O-
benzyloxypentan-1,2,4,-triol 3. Stereoselective cyclization
of triol 3 using diethyl carbonate and NaH in THF
at reflux for 3 h resulted in the formation of 1,4-anhy-
dro-3,5-di-O-benzyl-D-xylitol 4 as a syrup in 83%
1
yield.17 Compound 4 was characterized by its H NMR
spectrum from the appearance of H-2 at d 3.80 (dd,
J ¼ 11:0, 3.7 Hz), H-20 at d 4.08 (dd, J ¼ 11:0, 3.1 Hz),
and H-3 at d 4.12 as a multiplet.
Compound 4 on tosylation gave the corresponding
derivative 5 in quantitative yield, which was character-
1
ized by H NMR analysis from the appearance of H-2
and H-20 at d 3.80 and d 4.14, respectively, as multiplets
and H-3 at d 5.00 as a multiplet shifted downfield.
Reaction of derivative 5 with adenine in the presence of
K2CO3/18-crown-6 in DMF at 100 °C for 16 h resulted
in the formation of 6-amino-9-[(3S,4S,5R)-4-benzyloxy-
5-(benzyloxymethyl)tetrahydrofuran-3-yl]purine
6
in
58% yield as a solid, mp 162–164 °C. Compound 6 was
characterized by 1H NMR analysis from the appearance
of H-20 at d 4.20 (dd, J ¼ 11:4, 3.5 Hz), H-200 at d 4.45
(dd, J ¼ 11:4, 3.2 Hz), and H-30 at d 5.25 as a multiplet
and by its 13C NMR spectrum from the appearance of
C-20 at d 68.4 and C-30 at d 82.4. Reductive debenzyl-
ation (10% Pd/C/H2/MeOH/rt) of 6 for 12 h resulted in
the formation of 6-amino-9-[(3S,4S,5R)-4-hydroxy-5-
12. Diaz, Y.; Bravo, F.; Castillon, S. J. Org. Chem. 1999, 64,
6508–6511.
13. Zheng, X.; Nair, V. Tetrahedron 1999, 55, 11803–11818.
14. Bera, S.; Nair, V. Tetrahedron Lett. 2001, 42, 5813–5815.
15. Mereyala, H. B.; Mamidyala, S. K. Nucleosides, Nu-
cleotides (2004, in press).
16. (a) Levene, P. A.; Raymond, A. L. J. Biol. Chem. 1933,
102, 317–330; (b) De Belder, A. N. Adv. Carbohydr. Chem.
Bio. Chem. 1977, 34, 179–241.
17. Montgomery, J. A.; Thomas, H. J. J. Org. Chem. 1978, 43,
541–544.
(hydroxymethyl)tetrahydrofuran-3-yl]purine
solid, mp 260 °C (dec).
7
as
a
In summary, a simple method for obtaining 1,4-anhy-
droxylitol 4, a key intermediate required for the syn-
thesis of isonucleoside 7 from the corresponding triol 3